numpy数组与Python中列表处理效率对比

277 阅读1分钟

100w数据处理比较:

import random
import time
import numpy as np

# 列表
lst = []
for i in range(10000000):
    lst.append(random.random())
    
t_start = time.time() 
# 100w数据用时的和
ret = sum(lst)
t_end = time.time()

# print(f"耗时:{t_end - t_start}")
print("耗时:%f"%(t_end - t_start))
print(ret)
'''
输出:
耗时:0.114906
'''

# 数组
arr = np.array(lst)

t_start = time.time()
ret = np.sum(arr)
t_end = time.time()

print("耗时:%f"%(t_end - t_start))
print(ret)
'''
输出:
耗时:0.026016
'''