阅读 755

rapidjson帮你进行参数校验 | Python 主题月

本文正在参加「Python主题月」,详情查看 活动链接

微信公众号搜索【程序媛小庄】,Rest cannot be enjoyed by lazy people~

前言

在使用Django框架开发前后端分离的项目时,通常需要对前端传递过来的参数进行校验,校验的方式有多种,可以使用drf进行校验,也可以使用json进行校验,本文介绍在Python中rapidjson的基本使用以及如何进行参数校验。

rapidjson简介和安装

rapidjson是一个性能非常好的C++ JSON解析器和序列化库,它被包装成了Python3的扩展包,就是说在Python3中可以使用rapidjson进行数据的序列化和反序列化操作并且可以对参数进行校验,非常方便好用。

rapidjson安装命令:pip install python-rapidjson

rapidjson基本使用

rapidjsonjson模块在基本使用方法上一致的,只不过rapidjson在某些参数方面和json模块不兼容,这些参数并不常用,这里不做过多介绍,详情可参照rapidjson官方文档。基本使用介绍两个序列化的方法dump/dumps,反序列化的load/loads使用json模块的即可。

dumps & dump这两个方法都是将Python实例对象序列化为JSON格式的字符串,用法和参数大致相同,dump方法比dumps方法多了一个必要的file_like参数。

dumps() 方法

该方法返回的结果是一个Python 字符串实例。参数非常多,这里只介绍经常使用的三个参数。

rapidjson.dumps(obj, *, skipkeys=False, ensure_ascii=True, write_mode=WM_COMPACT, indent=4, default=None, sort_keys=False, number_mode=None, datetime_mode=None, uuid_mode=None, bytes_mode=BM_UTF8, iterable_mode=IM_ANY_ITERABLE, mapping_mode=MM_ANY_MAPPING, allow_nan=True)
复制代码

skipkeys

该参数表示是否跳过不可用的字典的key进行序列化,如果默认为False,如果修改为True字典的key如果不属于基本数据类型(str int float bool None)之一就会跳过该key而不会抛出TypeError的异常。

import rapidjson
from pprint import pprint

dic = {
    True: False,
    (0,): 'python'
}
res = rapidjson.dumps(dic)
pprint(res)  # TypeError: {True: False, (0,): 'python'} is not JSON serializable

res = rapidjson.dumps(dic, skipkeys=True)
pprint(res)  # '{}'
复制代码

ensure_ascii

该参数表示序列化的结果是否只包含ASCII字符,默认值是True,将Python实例序列化后所有的非ASCII码的字符都会被转义,如果将该参数的值修改为False,增会将字符原样输出。

dic = {
    'name': '丽丽',
    'name1': 'lili'
}
res = rapidjson.dumps(dic)
pprint(res)   # '{"name":"\\u4E3D\\u4E3D","name1":"lili"}'

res = rapidjson.dumps(dic, ensure_ascii=False)
pprint(res)  # '{"name":"丽丽","name1":"lili"}'
复制代码

sort_keys

该参数表示序列化时是否将字典的key按照字母进行排序。默认是False,如果修改为True,字典序列化得到的结果就是按照字典的key的字母顺序进行排序的。

dic = {
    'name': '丽丽',
    'age': '10'
}
res = rapidjson.dumps(dic, ensure_ascii=False, sort_keys=True)
pprint(res)  # '{"age":"10","name":"丽丽"}'
复制代码

dump()方法

该方法和dumps方法非常类似,不同的是该方法需要一个额外的必须的参数 - 一个file-like的可写流式对象,比如文件对象,将第一个参数obj进行序列化写入可写的流式对象中。

rapidjson.dump(obj, stream, *, skipkeys=False, ensure_ascii=True, write_mode=WM_COMPACT, indent=4, default=None, sort_keys=False, number_mode=None, datetime_mode=None, uuid_mode=None, bytes_mode=BM_UTF8, iterable_mode=IM_ANY_ITERABLE, mapping_mode=MM_ANY_MAPPING, chunk_size=65536, allow_nan=True)
复制代码

下面是该方法的基本使用:

# 写入文件
dic = {
    'name': '丽丽',
    'age': '10'
}
f = open('1.py', 'w', encoding='utf8')
res = rapidjson.dump(dic, f)
pprint(res)

# 或者下面这种用法
import io

stream = io.BytesIO()
dump('bar', stream)
print(stream.getvalue())  # b'"bar"'

复制代码

Validator class

rapidjson中的Validator类可以用来做参数校验。Validator的参数是JSON schema,当我们需要知道JSON数据中预期的字段以及值的表示方式时,这就是JSON Schema的用武之地,是描述JSON数据结构的一种声明格式,也可以通俗的理解为是参数的校验规则。如果JSON schema是不可用的JSON格式的数据,就会抛出JSONDecodeError的异常。

类的参数就是校验规则,如果给定的JSON数据没有通过校验就会抛出ValidationError异常,异常包括三个部分,分别是错误的类型、校验的规则以及在JSON字符串中错误出现的位置。

import rapidjson
from pprint import pprint

validate = rapidjson.Validator('{"required": ["a", "b"]}')  # 表示a和b这两个参数是必须的
validate('{"a": null, "b": 1}')  # 符合规则
validate('{"a": null, "c": false}')  # rapidjson.ValidationError: ('required', '#', '#')
复制代码
validate = rapidjson.Validator('{"type": "array",'  # 参数类型是array
                     ' "items": {"type": "string"},'  # array中的每个元素类型是string
                     ' "minItems": 1}')  # array中元素数量最少为1

validate('["foo", "bar"]')  # 符合规则
validate('[]')  #  rapidjson.ValidationError: ('minItems', '#', '#')
复制代码

关于JSON schema的更多参数校验规则以及定义规范可以参考*JSON schema官方文档*,下述是一种JSON schema格式仅供参考:

LOGIN_SCHEMA = {
    "type": "object",
    "properties": {
        "token": "string",
        "number": "integer"
    },
    "required": ["token"],
}   
}

validate = rapidjson.Validator(rapidjson.dumps(LOGIN_SCHEMA))
data = {
    'token': 'python',
    'number': 10
}
validate(rapidjson.dumps(data))
复制代码

结语

文章首发于微信公众号程序媛小庄,同步于掘金

码字不易,转载请说明出处,走过路过的小伙伴们伸出可爱的小指头点个赞再走吧(╹▽╹)

image.png

文章分类
后端
文章标签