1. 两数相加
给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。
请你将两个数相加,并以相同形式返回一个表示和的链表。
你可以假设除了数字 0 之外,这两个数都不会以 0 开头。 输入:l1 = [2,4,3], l2 = [5,6,4] 输出:[7,0,8] 解释:342 + 465 = 807. 提示:
每个链表中的节点数在范围 [1, 100] 内 0 <= Node.val <= 9 题目数据保证列表表示的数字不含前导零
- 思路与算法 由于输入的两个链表都是逆序存储数字的位数的,因此两个链表中同一位置的数字可以直接相加。
我们同时遍历两个链表,逐位计算它们的和,并与当前位置的进位值相加。具体而言,如果当前两个链表处相应位置的数字为 n 1 , n 2 n1,n2,进位值为 carry carry,则它们的和为 n 1 + n 2 + carry n1+n2+carry;其中,答案链表处相应位置的数字为 ( n 1 + n 2 + carry ) 10 (n1+n2+carry)mod10,而新的进位值为 ⌊ n 1 + n 2 + carry 10 ⌋ ⌊ 10 n1+n2+carry ⌋。
如果两个链表的长度不同,则可以认为长度短的链表的后面有若干个 0 0 。
此外,如果链表遍历结束后,有 carry
0 carry>0,还需要在答案链表的后面附加一个节点,节点的值为 carry carry。
代码(Java)
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode head = null, tail = null;
int carry = 0;
while (l1 != null || l2 != null) {
int n1 = l1 != null ? l1.val : 0;
int n2 = l2 != null ? l2.val : 0;
int sum = n1 + n2 + carry;
if (head == null) {
head = tail = new ListNode(sum % 10);
} else {
tail.next = new ListNode(sum % 10);
tail = tail.next;
}
carry = sum / 10;
if (l1 != null) {
l1 = l1.next;
}
if (l2 != null) {
l2 = l2.next;
}
}
if (carry > 0) {
tail.next = new ListNode(carry);
}
return head;
}
}
代码(C)
struct ListNode *head = NULL, *tail = NULL;
int carry = 0;
while (l1 || l2) {
int n1 = l1 ? l1->val : 0;
int n2 = l2 ? l2->val : 0;
int sum = n1 + n2 + carry;
if (!head) {
head = tail = malloc(sizeof(struct ListNode));
tail->val = sum % 10;
tail->next = NULL;
} else {
tail->next = malloc(sizeof(struct ListNode));
tail->next->val = sum % 10;
tail = tail->next;
tail->next = NULL;
}
carry = sum / 10;
if (l1) {
l1 = l1->next;
}
if (l2) {
l2 = l2->next;
}
}
if (carry > 0) {
tail->next = malloc(sizeof(struct ListNode));
tail->next->val = carry;
tail->next->next = NULL;
}
return head;
}
2.寻找两个正序数组的中位数
给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
代码(Java)
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int length1 = nums1.length, length2 = nums2.length;
int totalLength = length1 + length2;
if (totalLength % 2 == 1) {
int midIndex = totalLength / 2;
double median = getKthElement(nums1, nums2, midIndex + 1);
return median;
} else {
int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;
double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;
return median;
}
}
public int getKthElement(int[] nums1, int[] nums2, int k) {
/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
* 这里的 "/" 表示整除
* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
* 这样 pivot 本身最大也只能是第 k-1 小的元素
* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
*/
int length1 = nums1.length, length2 = nums2.length;
int index1 = 0, index2 = 0;
int kthElement = 0;
while (true) {
// 边界情况
if (index1 == length1) {
return nums2[index2 + k - 1];
}
if (index2 == length2) {
return nums1[index1 + k - 1];
}
if (k == 1) {
return Math.min(nums1[index1], nums2[index2]);
}
// 正常情况
int half = k / 2;
int newIndex1 = Math.min(index1 + half, length1) - 1;
int newIndex2 = Math.min(index2 + half, length2) - 1;
int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];
if (pivot1 <= pivot2) {
k -= (newIndex1 - index1 + 1);
index1 = newIndex1 + 1;
} else {
k -= (newIndex2 - index2 + 1);
index2 = newIndex2 + 1;
}
}
}
}