Discuss: www.cnblogs.com/grandyang/p…
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [2,1], p = 2, q = 1
Output: 2
Constraints:
- The number of nodes in the tree is in the range
[2, 105]. -109 <= Node.val <= 109- All
Node.valare unique. p != qpandqwill exist in the BST.
解法一:
这道题我们可以用递归来求解,我们首先来看题目中给的例子,由于二叉搜索树的特点是左<根<右,所以根节点的值一直都是中间值,大于左子树的所有节点值,小于右子树的所有节点值,那么我们可以做如下的判断,如果根节点的值大于p和q之间的较大值,说明p和q都在左子树中,那么此时我们就进入根节点的左子节点继续递归,如果根节点小于p和q之间的较小值,说明p和q都在右子树中,那么此时我们就进入根节点的右子节点继续递归,如果都不是,则说明当前根节点就是最小共同父节点,直接返回即可,参见代码如下:
class Solution {
fun lowestCommonAncestor(root: TreeNode?, p: TreeNode?, q: TreeNode?): TreeNode? {
if (root == null) {
return null
}
return when {
root.`val` > p!!.`val`.coerceAtLeast(q!!.`val`) -> {
lowestCommonAncestor(root.left, p, q)
}
root.`val` < p.`val`.coerceAtMost(q.`val`) -> {
lowestCommonAncestor(root.right, p, q)
}
else -> {
root
}
}
}
}
解法二:
当然,此题也有非递归的写法,用个 while 循环来代替递归调用即可,然后不停的更新当前的根节点,也能实现同样的效果,代码如下:
class Solution {
fun lowestCommonAncestor(root: TreeNode?, p: TreeNode?, q: TreeNode?): TreeNode? {
var tempNode = root
while (true) {
tempNode = if (tempNode!!.`val` > p!!.`val`.coerceAtLeast(q!!.`val`)) {
tempNode.left
} else if (tempNode.`val` < p.`val`.coerceAtMost(q.`val`)) {
tempNode.right
} else {
break
}
}
return tempNode
}
}