Java线程池-ThreadPoolExecutor概述

168 阅读5分钟

Java线程池-ThreadPoolExecutor概述

线程池执行器将会根据corePoolSize和maximumPoolSize自动地调整线程池大小。

​ 当在execute(Runnable)方法中提交新任务并且少于corePoolSize线程正在运行时,即使其他工作线程处于空闲状态,也会创建一个新线程来处理该请求。 如果有多于corePoolSize但小于maximumPoolSize线程正在运行,则仅当队列已满时才会创建新线程。 通过设置corePoolSize和maximumPoolSize相同,您可以创建一个固定大小的线程池。 通过将maximumPoolSize设置为基本上无界的值,例如Integer.MAX_VALUE,您可以允许池容纳任意数量的并发任务。 通常,核心和最大池大小仅在构建时设置,但也可以使用setCorePoolSize和setMaximumPoolSize进行动态更改。

任务在线程池中的处理流程如图:

1625147504322-2b52759d-9048-422e-8a47-1191294edd9e.png

ThreadFactory

CPU密集型-》CPU核数+1(C+1)

IO密集型-》2倍CPU核数+1)(2C+1)

I/O密集型适合读写,比如数据库的读写操作,CPU密集型适合运算

    /*
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *1.	判断当前线程数是否小于核心线程数,尝试使用addWorker一个新线程作为它的第一个任务如果能完成新						线程创建execute方法结束,成功提交任务
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *	在第一步没有完成任务提交;状态为运行并且能否成功加入任务到工作队列后,再进行一次check,如果状态
         // 在任务加入队列后变为了非运行(有可能是在执行到这里线程池shutdown了),非运行状态下当然是需要
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         *	如果不能加入任务到工作队列,将尝试使用任务新增一个线程,如果失败,则是线程池已经shutdown或者线						程池
         // 已经达到饱和状态,所以reject这个他任务

         */
	public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
     		// 工作线程数 < 核心线程数
        if (workerCountOf(c) < corePoolSize) {
          // 直接启动新线程,true表示会再次检查workerCount是否小于corePoolSize
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
    		// 运行态,并尝试将任务添加到队列中
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
    		// 使用尝试最大线程运行
        else if (!addWorker(command, false))
            reject(command);
    }
  • addWorker(command,true):创建核心线程执行任务;
  • addWorker(command,false):创建非核心线程执行任务;
  • addWorker(null,false):创建非核心线程,当前任务没空
private boolean addWorker(Runnable firstTask, boolean core) {
	  		// 第一部分:自旋、CAS、重读ctl 等结合,直到确定是否可以创建worker,
  			// 可以则跳过循环继续操作,否则返回false
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))// CAS增长workerCount,成功则跳出循环
                    break retry;
                c = ctl.get();  // Re-read ctl 重新获取ctl
                if (runStateOf(c) != rs)// 状态改变则继续外层循环,否则在内层循环
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

  			// 第二部分:创建worker,这部分使用ReentrantLock锁
        boolean workerStarted = false; // 线程启动标志位
        boolean workerAdded = false;	//线程是否加入workers 标志位
        Worker w = null;
        try {
            w = new Worker(firstTask); // 创建worker
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                  	// 获取到锁以后仍需检查ctl,可能在上一个获取到锁处理的线程可能会改变runState
                		// 如 ThreadFactory 创建失败 或线程池被 shut down等
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start(); // 启动线程
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w); // 失败操作
        }
        return workerStarted;
    }

addWorker的工作可分为两部分:

  • 第一部分:原子操作,判断是否可以创建worker,通过自旋、CAS、ctl操作,判断继续创建还是返回false,自旋周期一般很短。
  • 第二部分:同步创建workder,并启动线程。
private final class Worker extends AbstractQueuedSynchronizer implements Runnable
{
    private static final long serialVersionUID = 6138294804551838833L;

    /** 每个worker有自己的内部线程,ThreadFactory创建失败时是null */
    final Thread thread;
    /** 初始化任务,可能是null */
    Runnable firstTask;
    /** 每个worker的完成任务数 */
    volatile long completedTasks;

    Worker(Runnable firstTask) {
        setState(-1); // 禁止线程在启动前被打断
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
    }

    /** 重要的执行方法  */
    public void run() {
        runWorker(this);
    }

    // state = 0 代表未锁;state = 1 代表已锁

    protected boolean isHeldExclusively() {
        return getState() != 0;
    }

    protected boolean tryAcquire(int unused) {
        if (compareAndSetState(0, 1)) {
            setExclusiveOwnerThread(Thread.currentThread());
            return true;
        }
        return false;
    }

    protected boolean tryRelease(int unused) {
        setExclusiveOwnerThread(null);
        setState(0);
        return true;
    }

    public void lock()        { acquire(1); }
    public boolean tryLock()  { return tryAcquire(1); }
    public void unlock()      { release(1); }
    public boolean isLocked() { return isHeldExclusively(); }
    // interrupt已启动线程
    void interruptIfStarted() {
        Thread t;
        // 初始化是 state = -1,不会被interrupt
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
            try {
                t.interrupt();
            } catch (SecurityException ignore) {
            }
        }
    }
}

Worker 实现了简单的 非重入互斥锁,互斥容易理解,非重入是为了避免线程池的一些控制方法获得重入锁,比如setCorePoolSize操作。注意 Worker 实现锁的目的与传统锁的意义不太一样。其主要是为了控制线程是否可interrupt,以及其他的监控,如线程是否 active(正在执行任务)。

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // 允许被 interrupt
        boolean completedAbruptly = true;
        try {
            // loop 直至 task = null (线程池关闭、超时等)
            // 注意这里的getTask()方法,我们配置的阻塞队列会在这里起作用
            while (task != null || (task = getTask()) != null) {
                w.lock();  // 执行任务前上锁
                // 如果线程池停止,确保线程中断; 如果没有,确保线程不中断。这需要在第二种情况下进行重新获取ctl,以便在清除中断时处理shutdownNow竞争
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task); // 扩展点
                    Throwable thrown = null;
                    try {
                        task.run(); // 真正执行run方法
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown); // 扩展点
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly); // 线程退出工作
        }
    }