什么是进程?
进程就是正在执行的程序,是操作系统资源分配的基本单位。一般来说,进程包含指令、数据和PCB。
延伸问题:孤儿进程和僵尸进程有什么区别?
孤儿进程就是说一个父进程退出,而它的一个或多个子进程还在运行,那么这些子进程将成为孤儿进程。孤儿进程将被 init 进程(进程ID为1的进程)所收养,并由 init 进程对它们完成状态收集工作。因为孤儿进程会被 init 进程收养,所以孤儿进程不会对系统造成危害。 僵尸进程就是一个子进程的进程描述符在子进程退出时不会释放,只有当父进程通过 wait() 或 waitpid() 获取了子进程信息后才会释放。如果子进程退出,而父进程并没有调用 wait() 或 waitpid(),那么子进程的进程描述符仍然保存在系统中,这种进程称之为僵尸进程。僵尸进程通过 ps 命令显示出来的状态为 Z。 系统所能使用的进程号是有限的,如果产生大量僵尸进程,可能会因为没有可用的进程号而导致系统不能产生新的进程。如果要消灭系统中大量的僵尸进程,只需要将其父进程杀死,此时僵尸进程就会变成孤儿进程,从而被 init 进程所收养,这样 init 进程就会释放所有的僵尸进程所占有的资源,从而结束僵尸进程。
延伸问题:什么是守护进程? 守护进程是运行在后台的一种特殊进程,它是独立于控制终端的,并周期性地执行某些任务。
什么是线程? 线程是进程内部的不同的执行路径,是操作系统独立调度的基本单位。一个进程中可以有多个线程,它们共享进程资源。比如说,微信和浏览器是两个进程,浏览器进程里面有很多线程,例如 HTTP 请求线程、事件响应线程、渲染线程等等,线程的并发执行使得在浏览器中点击一个新链接从而发起 HTTP 请求时,浏览器还可以响应用户的其它事件。
进程与线程有什么区别? 拥有资源
进程是资源分配的基本单位,但是线程不拥有资源,线程可以访问隶属于进程的资源。
调度
线程是独立调度的基本单位,在同一进程中,线程的切换不会引起进程切换,从一个进程中的线程切换到另一个进程中的线程时,会引起进程切换。
系统开销
由于创建或撤销进程时,系统都要为之分配或回收资源,如内存空间、I/O 设备等,所付出的开销远大于创建或撤销线程时的开销。类似地,在进行进程切换时,涉及当前执行进程 CPU 环境的保存及新调度进程 CPU 环境的设置,而线程切换时只需保存和设置少量寄存器内容,开销很小。
通信方面
线程间可以通过直接读写同一进程中的数据进行通信,但是进程通信需要借助 IPC。
线程有哪两种?
- 用户级线程(user level thread):对于这类线程,有关线程管理的所有工作都由应用程序完成,内核意识不到线程的存在。在应用程序启动后,操作系统分配给该程序一个进程号,以及其对应的内存空间等资源。应用程序通常先在一个线程中运行,该线程被成为主线程。在其运行的某个时刻,可以通过调用线程库中的函数创建一个在相同进程中运行的新线程。用户级线程的好处是非常高效,不需要进入内核空间,但并发效率不高。
- 内核级线程(kernel level thread):对于这类线程,有关线程管理的所有工作由内核完成,应用程序没有进行线程管理的代码,只能调用内核线程的接口。内核维护进程及其内部的每个线程,调度也由内核基于线程架构完成。内核级线程的好处是,内核可以将不同线程更好地分配到不同的CPU,以实现真正的并行计算。 事实上,在现代操作系统中,往往使用组合方式实现多线程,即线程创建完全在用户空间中完成,并且一个应用程序中的多个用户级线程被映射到一些内核级线程上,相当于是一种折中方案。
并发和并行有什么区别?
并发就是在一段时间内,多个任务都会被处理;但在某一时刻,只有一个任务在执行。单核处理器可以做到并发。比如有两个进程A和B,A运行一个时间片之后,切换到B,B运行一个时间片之后又切换到A。因为切换速度足够快,所以宏观上表现为在一段时间内能同时运行多个程序。
并行就是在同一时刻,有多个任务在执行。这个需要多核处理器才能完成,在微观上就能同时执行多条指令,不同的程序被放到不同的处理器上运行,这个是物理上的多个进程同时进行。
大内核和微内核有什么区别?
- 大内核,就是将操作系统的全部功能都放进内核里面,包括调度、文件系统、网络、设备驱动器、存储管理等等,组成一个紧密连接整体。大内核的优点就是效率高,但是很难定位bug,拓展性比较差,每次需要增加新的功能,都要将新的代码和原来的内核代码重新编译。
- 微内核与单体内核不同,微内核只是将操作中最核心的功能加入内核,包括IPC、地址空间分配和基本的调度,这些东西都在内核态运行,其他功能作为模块被内核调用,并且是在用户空间运行。微内核比较好维护和拓展,但是效率可能不高,因为需要频繁地在内核态和用户态之间切换。
分时系统和实时系统有什么区别?
分时系统(Sharing time system)就是系统把CPU时间分成很短的时间片,轮流地分配给多个作业。它的优点就是对多个用户的多个作业都能保证足够快的响应时间,并且有效提高了资源的利用率。 实时系统(Real-time system)是系统对外部输入的信息,能够在规定的时间内(截止期限)处理完毕并做出反应。它的优点是能够集中地及时地处理并作出反应,高可靠性,安全性。 通常计算机采用的是分时,就是多个进程/用户之间共享CPU,从形势上实现多任务。各个用户/进程之间的调度并非精准度特别高,如果一个进程被锁住,可以给它分配更多的时间。而实时操作系统则不同,软件和硬件必须遵从严格的时间限制,超过时限的进程可能直接被终止。在这样的操作系统中,每次加锁都需要仔细考虑。
静态链接和动态链接有什么区别?
- 静态链接 特点:在生成可执行文件的时候(链接阶段),把所有需要的函数的二进制代码都包含到可执行文件中去。因此,链接器需要知道参与链接的目标文件需要哪些函数,同时也要知道每个目标文件都能提供什么函数,这样链接器才能知道是不是每个目标文件所需要的函数都能正确地链接。如果某个目标文件需要的函数在参与链接的目标文件中找不到的话,链接器就报错了。目标文件中有两个重要的接口来提供这些信息:一个是符号表,另外一个是重定位表。
优点:在程序发布的时候就不需要的依赖库,也就是不再需要带着库一块发布,程序可以独立执行。
缺点:程序体积会相对大一些。 如果静态库有更新的话,所有可执行文件都得重新链接才能用上新的静态库。
- 动态链接 特点: 在编译的时候不直接拷贝可执行代码,而是通过记录一系列符号和参数,在程序运行或加载时将这些信息传递给操作系统,操作系统负责将需要的动态库加载到内存中,然后程序在运行到指定的代码时,去执行内存中已经加载的动态库可执行代码,最终达到运行时连接的目的。
优点: 多个程序可以共享同一段代码,而不需要在磁盘上存储多个拷贝。
缺点: 由于是运行时加载,可能会影响程序的前期执行性能。
java的静态链接与动态链接:blog.csdn.net/yuan5883052…
编译有哪些阶段?
- 预处理阶段:处理以 # 开头的预处理命令;
- 编译阶段:翻译成汇编文件;
- 汇编阶段:将汇编文件翻译成可重定位目标文件;
- 链接阶段:将可重定位目标文件和 printf.o 等单独预编译好的目标文件进行合并,得到最终的可执行目标文件。
进程有哪些状态?
在五状态模型里面,进程一共有5中状态,分别是创建、就绪、运行、终止、阻塞。 运行状态就是进程正在CPU上运行。在单处理机环境下,每一时刻最多只有一个进程处于运行状态。 就绪状态就是说进程已处于准备运行的状态,即进程获得了除CPU之外的一切所需资源,一旦得到CPU即可运行。 阻塞状态就是进程正在等待某一事件而暂停运行,比如等待某资源为可用或等待I/O完成。即使CPU空闲,该进程也不能运行。 运行态→阻塞态:往往是由于等待外设,等待主存等资源分配或等待人工干预而引起的。
阻塞态→就绪态:则是等待的条件已满足,只需分配到处理器后就能运行。
运行态→就绪态:不是由于自身原因,而是由外界原因使运行状态的进程让出处理器,这时候就变成就绪态。例如时间片用完,或有更高优先级的进程来抢占处理器等。
就绪态→运行态:系统按某种策略选中就绪队列中的一个进程占用处理器,此时就变成了运行态。
进程调度算法有哪些?
- 先来先服务:非抢占式的调度算法,按照请求的顺序进行调度。
有利于长作业,但不利于短作业,因为短作业必须一直等待前面的长作业执行完毕才能执行,而长作业又需要执行很长时间,造成了短作业等待时间过长。另外,对I/O密集型进程也不利,因为这种进程每次进行I/O操作之后又得重新排队。
- 短作业优先(SJF)
非抢占式的调度算法,按估计运行时间最短的顺序进行调度。
长作业有可能会饿死,处于一直等待短作业执行完毕的状态。因为如果一直有短作业到来,那么长作业永远得不到调度。
- 高响应比优先(HRRN) 高响应比优先调度算法(Highest Response Ratio Next)是一种对CPU中央控制器响应比的分配的一种算法。HRRN是介于FCFS(先来先服务算法)与SJF(短作业优先算法)之间的折中算法,既考虑作业等待时间又考虑作业运行时间,既照顾短作业又不使长作业等待时间过长,改进了调度性能。
响应比=作业周转时间/作业处理时间=(作业处理时间+作业等待时间)/作业处理时间=1+(作业等待时间/作业处理时间) 等待时间=最后一个的提交时间-该作业到达的时间 作业执行规则,响应比高的先执行 周转时间=完成时间-提交时间
- 时间片轮转
将所有就绪进程按 FCFS 的原则排成一个队列,每次调度时,把 CPU 时间分配给队首进程,该进程可以执行一个时间片。当时间片用完时,由计时器发出时钟中断,调度程序便停止该进程的执行,并将它送往就绪队列的末尾,同时继续把 CPU 时间分配给队首的进程。
时间片轮转算法的效率和时间片的大小有很大关系:
因为进程切换都要保存进程的信息并且载入新进程的信息,如果时间片太小,会导致进程切换得太频繁,在进程切换上就会花过多时间。而如果时间片过长,那么实时性就不能得到保证。
- 优先级调度
为每个进程分配一个优先级,按优先级进行调度。
为了防止低优先级的进程永远等不到调度,可以随着时间的推移增加等待进程的优先级。
什么是抢占式调度?什么是非抢占式调度?
抢占式就是说操作系统将正在运行的进程强行暂停,由调度器将CPU分配给其他就绪进程。
非抢占式是调度器一旦把处理机分配给某进程后便让它一直运行下去,直到进程完成或发生进程调度,进程调度某事件而阻塞时,才把处理机分配给另一个进程。
什么是上下文切换?
对于单核单线程CPU而言,在某一时刻只能执行一条CPU指令。上下文切换(Context Switch)是一种将CPU资源从一个进程分配给另一个进程的机制。从用户角度看,计算机能够并行运行多个进程,这恰恰是操作系统通过快速上下文切换造成的结果。在切换的过程中,操作系统需要先存储当前进程的状态(包括内存空间的指针,当前执行完的指令等等),再读入下一个进程的状态,然后执行此进程。
系统调用和库函数有什么区别?
- 系统调用是应用程序向系统内核请求服务的方式。可以包括硬件相关的服务(例如,访问硬盘等),或者创建新进程,调度其他进程等。系统调用是程序和操作系统之间的重要接口。
- 库函数就是说把一些常用的函数编写完放到一个文件里,编写应用程序时调用,这是由第三方提供的,发生在用户地址空间。
- 在移植性方面,不同操作系统的系统调用一般是不同的,移植性差;库函数会相对好一些。比如说在所有的ANSI C编译器版本中,C库函数是相同的。
- 在调用开销方面,系统调用需要在用户空间和内核环境间切换,开销较大;而库函数调用开销较小。
什么是死锁?
在两个或多个并发进程中,如果一个进程集合中的每个进程都在等待只能由该进程集合中的其他进程才能引发的事件,那么该进程集合就产生了死锁。
延伸问题:死锁产生有哪些条件? 死锁产生的根本原因是多个进程竞争资源时,进程的推进顺序出现不正确。
互斥:每个资源要么已经分配给了一个进程,要么就是可用的。 占有和等待:已经得到了某个资源的进程可以再请求新的资源。 不可抢占:已经分配给一个进程的资源不能强制性地被抢占,它只能被占有它的进程显式地释放。 环路等待:有两个或者两个以上的进程组成一条环路,该环路中的每个进程都在等待下一个进程所占有的资源。
怎么解决死锁?
- 破坏互斥:不让资源被一个进程独占,可通过假脱机技术允许多个进程同时访问资源;
- 破坏占有和等待:实现方法是要求进程在开始执行前请求需要的所有资源。要求进程请求资源时,先暂时释放其当前拥有的所有资源,再尝试一次获取所需的全部资源。
- 破坏不可抢占:高优先级的线程与低优先级的线程同时阻塞,低优先级的进程会释放自己占有的资源;
- 破坏循环等待:方法是将所有资源进行统一编号,进程可以在任何时刻请求资源,但要求进程必须按照顺序请求资源。
死锁避免
通过银行家算法判断资源请求是否可能导致循环等待的形成,来避免死锁点的产生。因此,其前提是知道当前资源使用的整体情况,以及申请资源线程本身所占有的资源细节。
判断和决策中,主要使用两种避免方法。
线程启动拒绝:如果一个线程的请求会引发死锁,则不允许其启动。 资源分配拒绝:如果一个线程增加的资源请求会导致死锁,则不允许此申请。 整体来看,死锁避免是从资源和线程相互间关系着手,避免形成循环等待是其主要任务。
死锁检测和恢复
可以允许系统进入死锁状态,但会维护一个系统的资源分配图,定期调用死锁检测算法来检测途中是否存在死锁,检测到死锁发生后,采取死锁恢复算法进行恢复。
死锁检测方法如下:
在资源分配图中,找到不会阻塞又不独立的进程结点,使该进程获得其所需资源并运行,运行完毕后,再释放其所占有的全部资源。也就是消去该进程结点的请求边和分配边。 使用上面的算法进行一系列简化,若能消去所有边,则表示不会出现死锁,否则会出现死锁。
检测到死锁后,就需要解决死锁。目前操作系统中主要采用如下几种方法:
- 取消所有死锁相关线程,简单粗暴,但也确实是最常用的
- 把每个死锁线程回滚到某些检查点,然后重启
- 连续取消死锁线程直到死锁解除,顺序基于特定最小代价原则
- 连续抢占资源直到死锁解除
进程同步的方式有哪些?
临界区
临界区是一段代码,在临界区内进程将访问临界资源。任何时候最多只有一个进程可以进入临界区,也就是说,临界区具有排他性。所以,为了互斥访问临界资源,每个进程在进入临界区之前,需要先进行检查。
互斥量
就是使用一个互斥的变量来直接制约多个进程,每个进程只有拥有这个变量才具有访问公共资源的权限,因为互斥量只有一个,所以能保证资源的正确访问。
信号量
信号量(Semaphore)是一个整型变量,可以对其执行自增和自减操作,自减操作通常也叫做P操作,自增操作也称为V操作。这两个操作需要被设计成原语,是不可分割,通常的做法是在执行这些操作的时候屏蔽中断。进程使用这两个操作进行同步。
对于P操作,如果执行操作后信号量小于 0,那么执行该操作的进程就会阻塞,否则继续执行; 对于V操作,如果操作之后的信号量大于0,那么就会从阻塞队列唤醒一个进程。
管程
管程使用的是面向对象思想,将表示共享资源的数据结构还有相关的操作,包括同步机制,都集中并封装到一起。所有进程都只能通过管程间接访问临界资源,而管程只允许一个进程进入并执行操作,从而实现进程互斥。管程中设置了多个条件变量,表示多个进程被阻塞或挂起的条件。对条件变量执行 wait() 操作会导致调用进程阻塞,把管程让出来给另一个进程持有。signal() 操作用于唤醒被阻塞的进程。管程有一个重要特性,就是在一个时刻只能有一个进程使用管程。进程在无法继续执行的时候不能一直占用管程,否则其它进程永远不能使用管程。
进程间通信的方式有哪些?
- 管道 管道的实质是一个内核缓冲区,进程以先进先出的方式从缓冲区存取数据,管道一端的进程顺序的将数据写入缓冲区,另一端的进程则顺序的读出数据。该缓冲区可以看做是一个循环队列,读和写的位置都是自动增长的,不能随意改变,一个数据只能被读一次,读出来以后在缓冲区就不复存在了。当缓冲区读空或者写满时,有一定的规则控制相应的读进程或者写进程进入等待队列,当空的缓冲区有新数据写入或者满的缓冲区有数据读出来时,就唤醒等待队列中的进程继读写。 管道是半双工的,数据只能向一个方向流动;如果需要双方通信时,需要建立起两个管道。 管道只能用于父子进程或者兄弟进程之间或者说具有亲缘关系的进程; 管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,只存在与内存中。
管道的主要局限性正体现在它的特点上,比如只支持单向数据流,只能用于具有亲缘关系的进程之间,没有名字,管道的缓冲区是有限的等等。
- 命名管道
这种管道也叫FIFO。命名管道不同于管道的地方,在于它提供了一个路径名与之关联,以命名管道的文件形式存在于文件系统中,这样,即使与命名管道的创建进程不存在亲缘关系的进程,只要可以访问文件系统中的这个路径,就能够彼此通过命名管道相互通信。命名管道严格遵循先进先出原则的,不支持诸如数据随机定位。命名管道的名字存在于文件系统中,但内容存放在内存中。
- 消息队列
消息队列是保存在内存中的消息链表,具有特定的格式,它是存放在内存里面的,并且每个消息队列都有唯一的标识。消息队列允许一个或多个进程向它写入与读取消息,所以,利用消息队列,一个进程可以将一个数据块发送到另一个进程,每个数据块都有一个类型,接收进程可以独立地接收含有不同类型的数据结构,这个过程是异步的,我们可以通过发送消息来避免命名管道的同步和阻塞问题。但消息队列的数据块有一个最大长度的大小限制。
消息队列与管道通信相比,其优势是对每个消息指定特定的消息类型,接收的时候不需要按照队列次序,而是可以根据自定义条件接收特定类型的消息。
- 共享内存
共享内存是针对其他通信机制运行效率较低而设计的,它可以让多个进程可以可以直接读写同一块内存空间,是最快的IPC形式。为了在多个进程间交换信息,内核专门留出了一块内存区,可以由需要访问的进程将其映射到自己的私有地址空间。进程就可以直接读写这一块内存而不需要进行数据的拷贝,从而大大提高效率。 由于多个进程共享一段内存,因此需要依靠某种同步机制来达到进程间的同步和互斥。
- 信号
信号是Linux系统中用于进程之间通信或操作的一种机制,信号可以在任何时候发送给某一进程,而无须知道该进程的状态。如果该进程并未处于执行状态,则该信号就由内核保存起来,知道该进程恢复执行并传递给他为止。
Linux提供了几十种信号,分别代表着不同的意义。信号之间依靠他们的值来区分,但是通常在程序中使用信号的名字来表示一个信号。
信号是在软件层次上对中断机制的一种模拟,是一种异步通信方式,信号可以在用户空间进程和内核之间直接交互。内核也可以利用信号来通知用户空间的进程来通知用户空间发生了哪些系统事件
什么是虚拟内存? 虚拟内存就是说,让物理内存扩充成更大的逻辑内存,从而让程序获得更多的可用内存。虚拟内存使用部分加载的技术,让一个进程或者资源的某些页面加载进内存,从而能够加载更多的进程,甚至能加载比内存大的进程,这样看起来好像内存变大了,这部分内存其实包含了磁盘或者硬盘,并且就叫做虚拟内存。
什么是分页系统? 分页就是说,将磁盘或者硬盘分为大小固定的数据块,叫做页,然后内存也分为同样大小的块,叫做页框。当进程执行的时候,会将磁盘的页载入内存的某些页框中,并且正在执行的进程如果发生缺页中断也会发生这个过程。页和页框都是由两个部分组成的,一个是页号或者页框号,一个是偏移量。分页一般是有硬件来完成的,每个页都对应一个页框,它们的对应关系存放在一个叫做页表的数据结构中,页号作为这个页表的索引,页框号作为页表的值。操作系统负责维护这个页表。
段式存储管理是一种符合用户视角的内存分配管理方案。在段式存储管理中,将程序的地址空间划分为若干段(segment),如代码段,数据段,堆栈段;使程序和数据可以被划分为逻辑上独立的地址空间并且有助于共享和保护。段式管理的优点是:没有内碎片(因为段大小可变,改变段大小来消除内碎片)。但段换入换出时,会产生外碎片(比如4k的段换5k的段,会产生1k的外碎片)
分页和分段有什区别?
- 1.目的
页是信息的物理单位,分页是为实现离散分配方式,提高内存的利用率。或者说,分页是出于系统管理的需要而不是用户需要。
段是信息的逻辑单位,它含有一组其意义相对完整的信息。分段主要是为了使程序和数据可以被划分为逻辑上独立的地址空间并且有助于共享和保护。
- 2.长度
页的大小固定而且由系统决定,由系统把逻辑地址划分为页号和页内地址两部分,是由机器硬件实现的,因而在系统中只能有一种大小的页面。
段的长度不固定,决定于用户所编写的程序,通常由编译程序在对程序进行编译时,根据信息的性质来划分。
- 3.地址空间
页的地址空间是一维的,即单一的线形地址空间,例如第0页的最后一个地址和第1页的第一个地址在数值上是连续的。因此分页机制的逻辑地址空间是一维的。
作业地址空间是二维的,程序员在标识一个地址时,既需要给出段名,又需给出段内地址。
- 4.碎片
分页有内部碎片无外部碎片
分段有外部碎片无内部碎片
页面替换算法有哪些?
在程序运行过程中,如果要访问的页面不在内存中,就发生缺页中断从而将该页调入内存中。此时如果内存已无空闲空间,系统必须从内存中调出一个页面到磁盘对换区中来腾出空间。
先进先出
选择换出的页面是最先进入的页面。该算***将那些经常被访问的页面也被换出,从而使缺页率升高。
LRU
虽然无法知道将来要使用的页面情况,但是可以知道过去使用页面的情况。LRU 将最近最久未使用的页面换出。为了实现 LRU,需要在内存中维护一个所有页面的链表。当一个页面被访问时,将这个页面移到链表表头。这样就能保证链表表尾的页面是最近最久未访问的。因为每次访问都需要更新链表,因此这种方式实现的 LRU 代价很高。
LFU 最不经常使用
硬链接和软链接有什么区别?
硬链接:linux下的文件都是通过inode节点来表明的,创建硬链接,相当于创建一个指针,该指针指向了源文件的inode节点,并且会将源文件的应用计数加一,当删除一个文件时,会将引用指针减一,直到引用计数为0,才会删除源文件
特点:硬链接无法夸文件系统,在非超级用户模式下,只能够给文件创立链接,而不能作用于目录.
软链接:相当与创建了一个新的文件,该文件是一种特殊的文件,在linux下叫做链接文件,链接文件内部保存了源文件的地址,除了删除操作,其他任何操作都会转发给源文件.