一、简介
RBF神将网络是一种三层神经网络,其包括输入层、隐层、输出层。从输入空间到隐层空间的变换是非线性的,而从隐层空间到输出层空间变换是线性的。流图如下:
RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。
2 RBF神经网络的学习问题
二、源代码
%% I. 清空环境变量
clear all
clc
%% II. 训练集/测试集产生
%%
% 1. 导入数据
load iris_data.mat
%%
% 2 随机产生训练集和测试集
P_train = [];
T_train = [];
P_test = [];
T_test = [];
for i = 1:3
temp_input = features((i-1)*50+1:i*50,:);
temp_output = classes((i-1)*50+1:i*50,:);
n = randperm(50);
% 训练集——120个样本
P_train = [P_train temp_input(n(1:40),:)'];
T_train = [T_train temp_output(n(1:40),:)'];
% 测试集——30个样本
P_test = [P_test temp_input(n(41:50),:)'];
T_test = [T_test temp_output(n(41:50),:)'];
end
%% III. 模型建立
result_grnn = [];
result_pnn = [];
time_grnn = [];
time_pnn = [];
for i = 1:4
for j = i:4
p_train = P_train(i:j,:);
p_test = P_test(i:j,:);
%%
% 1. GRNN创建及仿真测试
t = cputime;
% 创建网络
net_grnn = newgrnn(p_train,T_train);
% 仿真测试
t_sim_grnn = sim(net_grnn,p_test);
T_sim_grnn = round(t_sim_grnn);
t = cputime - t;
time_grnn = [time_grnn t];
result_grnn = [result_grnn T_sim_grnn'];
%%
% 2. PNN创建及仿真测试
t = cputime;
Tc_train = ind2vec(T_train);
% 创建网络
net_pnn = newpnn(p_train,Tc_train);
% 仿真测试
Tc_test = ind2vec(T_test);
t_sim_pnn = sim(net_pnn,p_test);
T_sim_pnn = vec2ind(t_sim_pnn);
t = cputime - t;
time_pnn = [time_pnn t];
result_pnn = [result_pnn T_sim_pnn'];
end
end
三、运行结果
四、备注
版本:2014a