设计模式十三--组合模式

336 阅读7分钟

这是我参与更文挑战的第26天,活动详情查看: 更文挑战

设计模式

组合模式

组合模式又叫部分整体模式,是用于把一组相似的对象当作一个单一的对象。组合模式依据树形结构来组合对象,用来表示部分以及整体层次,即结构性模式。 比如我们在公司,公司Company有很多分公司,而分公司BranchOffice又有很多部门Department。

透明式

抽象构件角色Component为树叶构件Department和树枝构件Company和BranchOffice声明公共接口,并实现它们的默认行为add、remove、print。

package com.wangscaler.composite;

/**
 * @author wangscaler
 * @date 2021.06.28 16:25
 */
public abstract class Component {
    private String name;
    private String des;

    public Component(String name, String des) {
        this.name = name;
        this.des = des;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getDes() {
        return des;
    }

    public void setDes(String des) {
        this.des = des;
    }

    protected void add(Component component) {
        throw new UnsupportedOperationException();
    }

    protected void remove(Component component) {
        throw new UnsupportedOperationException();
    }

    protected abstract void print();
}

树枝构件公司Company

package com.wangscaler.composite;

import java.util.ArrayList;
import java.util.List;

/**
 * @author wangscaler
 * @date 2021.06.28 16:25
 */
public class Company extends Component {
    List<Component> components = new ArrayList<Component>();

    public Company(String name, String des) {
        super(name, des);
    }

    @Override
    protected void print() {
        System.out.println(getName() + ":");
        for (int i = 0; i < components.size(); i++) {
            System.out.println(components.get(i).getName() + "(" + components.get(i).getDes() + ")");
        }
    }

    @Override
    protected void add(Component component) {
        components.add(component);
    }

    @Override
    protected void remove(Component component) {
        components.remove(component);
    }

    @Override
    public String getName() {
        return super.getName();
    }

    @Override
    public String getDes() {
        return super.getDes();
    }
}

树枝构件分公司BranchOffice

package com.wangscaler.composite;

import java.util.ArrayList;
import java.util.List;

/**
 * @author wangscaler
 * @date 2021.06.28 16:25
 */
public class BranchOffice extends Component {
    List<Component> components = new ArrayList<Component>();

    public BranchOffice(String name, String des) {
        super(name, des);
    }

    @Override
    protected void print() {
        System.out.println(getName() + ":");
        for (int i = 0; i < components.size(); i++) {
            System.out.println(components.get(i).getName() + "(" + components.get(i).getDes() + ")");
        }
    }

    @Override
    protected void add(Component component) {
        components.add(component);
    }

    @Override
    protected void remove(Component component) {
        components.remove(component);
    }

    @Override
    public String getName() {
        return super.getName();
    }

    @Override
    public String getDes() {
        return super.getDes();
    }
}

而我们的树叶构件部门Departmentm,就没必要重写add、remove方法,因为他已经没有字节点。

package com.wangscaler.composite;

import java.util.ArrayList;
import java.util.List;

/**
 * @author wangscaler
 * @date 2021.06.28 16:25
 */
public class Department extends Component {
    List<Component> components = new ArrayList<Component>();

    public Department(String name, String des) {
        super(name, des);
    }

    @Override
    protected void print() {
        System.out.println(getName());
        for (int i = 0; i < components.size(); i++) {
            System.out.println(components.get(i));
        }
    }

    @Override
    public String getName() {
        return super.getName();
    }

    @Override
    public String getDes() {
        return super.getDes();
    }
}

main

package com.wangscaler.composite;

public class Composite {
    public static void main(String[] args) {
        Component company = new Company("字节跳动", "互联网公司");
        Component juejin = new BranchOffice("掘金", "技术社区");
        Component tiktok = new BranchOffice("抖音", "小视频");
        company.add(juejin);
        company.add(tiktok);
        juejin.add(new Department("运营部", "负责推广"));
        juejin.add(new Department("开发部", "负责开发"));
        tiktok.add(new Department("运维部", "负责部署调优"));
        tiktok.add(new Department("测试部", "负责找事"));
        company.print();
        juejin.print();
        tiktok.print();
    }
}

这种模式,也具有良好的扩展性,比如我们增加部门WangScaler,只需要new Department("WangScaler", "自恋中"),上述的属于组合模式中的透明式的组合模式。

ps:没有讽刺测试部的意思,调侃而已,调侃而已。

安全式

那么安全式的组合模式怎么写?只需要将add,remove方法从抽象构件Component移到树枝构件BranchOffice和Company中

抽象构件Component

package com.wangscaler.composite;

/**
 * @author wangscaler
 * @date 2021.06.28 16:25
 */
public abstract class Component1 {
    private String name;
    private String des;

    public Component1(String name, String des) {
        this.name = name;
        this.des = des;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getDes() {
        return des;
    }

    public void setDes(String des) {
        this.des = des;
    }

    protected abstract void print();
}

树枝构件Company

package com.wangscaler.composite;

import java.util.ArrayList;
import java.util.List;

/**
 * @author wangscaler
 * @date 2021.06.28 16:25
 */
public class Company1 extends Component1 {
    List<Component1> components = new ArrayList<Component1>();

    public Company1(String name, String des) {
        super(name, des);
    }

    @Override
    protected void print() {
        System.out.println(getName() + ":");
        for (int i = 0; i < components.size(); i++) {
            System.out.println(components.get(i).getName() + "(" + components.get(i).getDes() + ")");
        }
    }

    protected void add(Component1 component) {
        components.add(component);
    }

    protected void remove(Component1 component) {
        components.remove(component);
    }

    @Override
    public String getName() {
        return super.getName();
    }

    @Override
    public String getDes() {
        return super.getDes();
    }
}

树枝构件BranchOffice

package com.wangscaler.composite;

import java.util.ArrayList;
import java.util.List;

/**
 * @author wangscaler
 * @date 2021.06.28 16:25
 */
public class BranchOffice1 extends Component1 {
    List<Component1> components = new ArrayList<Component1>();

    public BranchOffice1(String name, String des) {
        super(name, des);
    }

    @Override
    protected void print() {
        System.out.println(getName() + ":");
        for (int i = 0; i < components.size(); i++) {
            System.out.println(components.get(i).getName() + "(" + components.get(i).getDes() + ")");
        }
    }


    protected void add(Component1 component) {
        components.add(component);
    }


    protected void remove(Component1 component) {
        components.remove(component);
    }

    @Override
    public String getName() {
        return super.getName();
    }

    @Override
    public String getDes() {
        return super.getDes();
    }
}

这样,就不会出现在叶子节点调用add、remove这种情况的出现了。

源码中的组合模式

JDK中的HashMap

抽象构件角色Map

package java.util;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Function;
import java.io.Serializable;

public interface Map<K,V> {

    int size();

    boolean isEmpty();

    boolean containsKey(Object key);
    
    boolean containsValue(Object value);

    V get(Object key);

    V put(K key, V value);

    V remove(Object key);

    void putAll(Map<? extends K, ? extends V> m);

    void clear();
    
    Set<K> keySet();
    
    Collection<V> values();
    
    Set<Map.Entry<K, V>> entrySet();
    
    interface Entry<K,V> {

        K getKey();


        V getValue();

        V setValue(V value);

        boolean equals(Object o);


        int hashCode();

       
        public static <K extends Comparable<? super K>, V> Comparator<Map.Entry<K,V>> comparingByKey() {
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> c1.getKey().compareTo(c2.getKey());
        }

        public static <K, V extends Comparable<? super V>> Comparator<Map.Entry<K,V>> comparingByValue() {
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> c1.getValue().compareTo(c2.getValue());
        }

        public static <K, V> Comparator<Map.Entry<K, V>> comparingByKey(Comparator<? super K> cmp) {
            Objects.requireNonNull(cmp);
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> cmp.compare(c1.getKey(), c2.getKey());
        }

      
        public static <K, V> Comparator<Map.Entry<K, V>> comparingByValue(Comparator<? super V> cmp) {
            Objects.requireNonNull(cmp);
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> cmp.compare(c1.getValue(), c2.getValue());
        }
    }

   
    boolean equals(Object o);

    int hashCode();

    default V getOrDefault(Object key, V defaultValue) {
        V v;
        return (((v = get(key)) != null) || containsKey(key))
            ? v
            : defaultValue;
    }

    default void forEach(BiConsumer<? super K, ? super V> action) {
        Objects.requireNonNull(action);
        for (Map.Entry<K, V> entry : entrySet()) {
            K k;
            V v;
            try {
                k = entry.getKey();
                v = entry.getValue();
            } catch(IllegalStateException ise) {
                // this usually means the entry is no longer in the map.
                throw new ConcurrentModificationException(ise);
            }
            action.accept(k, v);
        }
    }

    default void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Objects.requireNonNull(function);
        for (Map.Entry<K, V> entry : entrySet()) {
            K k;
            V v;
            try {
                k = entry.getKey();
                v = entry.getValue();
            } catch(IllegalStateException ise) {
                // this usually means the entry is no longer in the map.
                throw new ConcurrentModificationException(ise);
            }

            // ise thrown from function is not a cme.
            v = function.apply(k, v);

            try {
                entry.setValue(v);
            } catch(IllegalStateException ise) {
                // this usually means the entry is no longer in the map.
                throw new ConcurrentModificationException(ise);
            }
        }
    }

   
    default V putIfAbsent(K key, V value) {
        V v = get(key);
        if (v == null) {
            v = put(key, value);
        }

        return v;
    }

 
    default boolean remove(Object key, Object value) {
        Object curValue = get(key);
        if (!Objects.equals(curValue, value) ||
            (curValue == null && !containsKey(key))) {
            return false;
        }
        remove(key);
        return true;
    }

   
    default boolean replace(K key, V oldValue, V newValue) {
        Object curValue = get(key);
        if (!Objects.equals(curValue, oldValue) ||
            (curValue == null && !containsKey(key))) {
            return false;
        }
        put(key, newValue);
        return true;
    }

    default V replace(K key, V value) {
        V curValue;
        if (((curValue = get(key)) != null) || containsKey(key)) {
            curValue = put(key, value);
        }
        return curValue;
    }

    default V computeIfAbsent(K key,
            Function<? super K, ? extends V> mappingFunction) {
        Objects.requireNonNull(mappingFunction);
        V v;
        if ((v = get(key)) == null) {
            V newValue;
            if ((newValue = mappingFunction.apply(key)) != null) {
                put(key, newValue);
                return newValue;
            }
        }

        return v;
    }

    default V computeIfPresent(K key,
            BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);
        V oldValue;
        if ((oldValue = get(key)) != null) {
            V newValue = remappingFunction.apply(key, oldValue);
            if (newValue != null) {
                put(key, newValue);
                return newValue;
            } else {
                remove(key);
                return null;
            }
        } else {
            return null;
        }
    }

    default V compute(K key,
            BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);
        V oldValue = get(key);

        V newValue = remappingFunction.apply(key, oldValue);
        if (newValue == null) {
            // delete mapping
            if (oldValue != null || containsKey(key)) {
                // something to remove
                remove(key);
                return null;
            } else {
                // nothing to do. Leave things as they were.
                return null;
            }
        } else {
            // add or replace old mapping
            put(key, newValue);
            return newValue;
        }
    }
    default V merge(K key, V value,
            BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);
        Objects.requireNonNull(value);
        V oldValue = get(key);
        V newValue = (oldValue == null) ? value :
                   remappingFunction.apply(oldValue, value);
        if(newValue == null) {
            remove(key);
        } else {
            put(key, newValue);
        }
        return newValue;
    }
}

可以看到在这个类声明了put、remove、putAll、clear等等接口。而在树枝构件HashMap中

package java.util;
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    static final int MAXIMUM_CAPACITY = 1 << 30;

    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    static final int TREEIFY_THRESHOLD = 8;
    
    static final int UNTREEIFY_THRESHOLD = 6;

    static final int MIN_TREEIFY_CAPACITY = 64;

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;



    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    transient Node<K,V>[] table;

   
    transient Set<Map.Entry<K,V>> entrySet;

    
    transient int size;

    transient int modCount;

  
    int threshold;

   
    final float loadFactor;

   
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

   
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

   
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

   
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

   
    public int size() {
        return size;
    }

    
    public boolean isEmpty() {
        return size == 0;
    }

  
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

   
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

  
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

   
 
  
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

   
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

   
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    @Override
    public V replace(K key, V value) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }
}

在这里同样也实现了上述的四个方法。

而在树叶构件中,没有实现

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }

    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

总结

  • 组合模式包含以下主要角色。

    • 1、抽象构件角色:为树叶构件和树枝构件声明公共接口(上述的print),并实现它们的默认行为。透明式的组合模式中抽象构件还声明访问和管理子类的接口;在安全式的组合模式中不声明访问和管理子类的接口。定义一些通用的方法,比如新增(上述的add)、删除(上述的remove)
    • 2、树枝构件角色 / 中间构件:分支节点对象,它有子节点。它的主要作用是存储和管理子部件,通常包含 add()、remove()、getchild()(上述的print) 等方法。
    • 3、树叶构件角色:叶子节点,用于继承或实现抽象构件。
  • 组合模式分为透明式的组合模式和安全式的组合模式。

    • 1、透明式的组合模式:像上述的公司就是透明式的组合模式,在抽象类Component声明了所有子类中的全部方法,无需区分树枝构件和叶子构件,但对于叶子构件来说,是无需实现add和remove方法的,却还是要实现,空实现或者抛出异常,在我们的例子中就是抛出的异常。
    • 2、安全式的组合模式:将管理子构件的方法(add、remove)移到树枝构件(Company1、BranchOffice1)中,在树叶构件和抽象构件中不写,这样保证了安全,却失去了透明,调用的时候必须得知道相应的角色。

参考资料