R语言大数据分析纽约市的311万条投诉统计可视化与时间序列分析

162 阅读4分钟

原文链接:tecdat.cn/?p=9800

原文出处:拓端数据部落公众号

 


 

介绍

 

本文并不表示R在数据分析方面比Python更好或更快速,我本人每天都使用两种语言。这篇文章只是提供了比较这两种语言的机会。

本文中的  数据  每天都会更新,我的文件版本更大,为4.63 GB。


CSV文件包含纽约市的311条投诉。它是纽约市开放数据门户网站中最受欢迎的数据集。

 

数据工作流程

 

install.packages("devtools")
library("devtools")
install_github("ropensci/plotly")
library(plotly)

需要创建一个帐户以连接到plotly API。或者,可以只使用默认的ggplot2图形。

 

set_credentials_file("DemoAccount", "lr1c37zw81") ## Replace contents with your API Key

 

 

使用dplyr在R中进行分析

 

假设已安装sqlite3(因此可通过终端访问)。

$ sqlite3 data.db # Create your database
$.databases       # Show databases to make sure it works
$.mode csv        
$.import <filename> <tablename>
# Where filename is the name of the csv & tablename is the name of the new database table
$.quit 

将数据加载到内存中。

 

library(readr)
# data.table, selecting a subset of columns
time_data.table <- system.time(fread('/users/ryankelly/NYC_data.csv', 
                   select = c('Agency', 'Created Date','Closed Date', 'Complaint Type', 'Descriptor', 'City'), 
                   showProgress = T))
kable(data.frame(rbind(time_data.table, time_data.table_full, time_readr)))
 user.selfsys.selfelapseduser.childsys.child
time_data.table63.5881.95265.63300
time_data.table_full205.5713.124208.88000
time_readr277.7205.018283.02900

我将使用data.table读取数据。该 fread 函数大大提高了读取速度。

关于dplyr

 

默认情况下,dplyr查询只会从数据库中提取前10行。

library(dplyr)      ## Will be used for pandas replacement

# Connect to the database
db <- src_sqlite('/users/ryankelly/data.db')
db

 

数据处理的两个最佳选择(除了R之外)是:

  • 数据表
  • dplyr

预览数据

 

# Wrapped in a function for display purposes
head_ <- function(x, n = 5) kable(head(x, n))

head_(data)
AgencyCreatedDateClosedDateComplaintTypeDescriptorCity
NYPD04/11/2015 02:13:04 AM Noise - Street/SidewalkLoud Music/PartyBROOKLYN
DFTA04/11/2015 02:12:05 AM Senior Center ComplaintN/AELMHURST
NYPD04/11/2015 02:11:46 AM Noise - CommercialLoud Music/PartyJAMAICA
NYPD04/11/2015 02:11:02 AM Noise - Street/SidewalkLoud TalkingBROOKLYN
NYPD04/11/2015 02:10:45 AM Noise - Street/SidewalkLoud Music/PartyNEW YORK

 

选择几列

 

ComplaintTypeDescriptorAgency
Noise - Street/SidewalkLoud Music/PartyNYPD
Senior Center ComplaintN/ADFTA
Noise - CommercialLoud Music/PartyNYPD
Noise - Street/SidewalkLoud TalkingNYPD
Noise - Street/SidewalkLoud Music/PartyNYPD

 

 

 

ComplaintTypeDescriptorAgency
Noise - Street/SidewalkLoud Music/PartyNYPD
Senior Center ComplaintN/ADFTA
Noise - CommercialLoud Music/PartyNYPD
Noise - Street/SidewalkLoud TalkingNYPD
Noise - Street/SidewalkLoud Music/PartyNYPD
Noise - Street/SidewalkLoud TalkingNYPD
Noise - CommercialLoud Music/PartyNYPD
HPD Literature RequestThe ABCs of Housing - SpanishHPD
Noise - Street/SidewalkLoud TalkingNYPD
Street ConditionPlate Condition - NoisyDOT

 

使用WHERE过滤行

 

ComplaintTypeDescriptorAgency
Noise - Street/SidewalkLoud Music/PartyNYPD
Noise - CommercialLoud Music/PartyNYPD
Noise - Street/SidewalkLoud TalkingNYPD
Noise - Street/SidewalkLoud Music/PartyNYPD
Noise - Street/SidewalkLoud TalkingNYPD

 

使用WHERE和IN过滤列中的多个值

 

ComplaintTypeDescriptorAgency
Noise - Street/SidewalkLoud Music/PartyNYPD
Noise - CommercialLoud Music/PartyNYPD
Noise - Street/SidewalkLoud TalkingNYPD
Noise - Street/SidewalkLoud Music/PartyNYPD
Noise - Street/SidewalkLoud TalkingNYPD

 

在DISTINCT列中查找唯一值

##       City
## 1 BROOKLYN
## 2 ELMHURST
## 3  JAMAICA
## 4 NEW YORK
## 5         
## 6  BAYSIDE

 

使用COUNT(*)和GROUP BY查询值计数

 

# dt[, .(No.Complaints = .N), Agency]
#setkey(dt, No.Complaints) # setkey index's the data

q <- data %>% select(Agency) %>% group_by(Agency) %>% summarise(No.Complaints = n())
head_(q)
AgencyNo.Complaints
3-1-122499
ACS3
AJC7
ART3
CAU8

 

使用ORDER和-排序结果

 

 

 

数据库中有多少个城市?

# dt[, unique(City)]

q <- data %>% select(City) %>% distinct() %>% summarise(Number.of.Cities = n())
head(q)
##   Number.of.Cities
## 1             1818

让我们来绘制10个最受关注的城市

 

CityNo.Complaints
BROOKLYN2671085
NEW YORK1692514
BRONX1624292
 766378
STATEN ISLAND437395
JAMAICA147133
FLUSHING117669
ASTORIA90570
Jamaica67083
RIDGEWOOD66411

 

 

  • 用  UPPER 转换CITY格式。
CITYNo.Complaints
BROOKLYN2671085
NEW YORK1692514
BRONX1624292
 766378
STATEN ISLAND437395
JAMAICA147133
FLUSHING117669
ASTORIA90570
JAMAICA67083
RIDGEWOOD66411

 

投诉类型(按城市)


# Plot result
plt <- ggplot(q_f, aes(ComplaintType, No.Complaints, fill = CITY)) + 
            geom_bar(stat = 'identity') + 
            theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1))

plt

 

第2部分时间序列运算

提供的数据不适合SQLite的标准日期格式。

在SQL数据库中创建一个新列,然后使用格式化的date语句重新插入数据 创建一个新表并将格式化日期插入原始列名。

使用时间戳字符串过滤SQLite行:YYYY-MM-DD hh:mm:ss

# dt[CreatedDate < '2014-11-26 23:47:00' & CreatedDate > '2014-09-16 23:45:00', 
#      .(ComplaintType, CreatedDate, City)]

q <- data %>% filter(CreatedDate < "2014-11-26 23:47:00",   CreatedDate > "2014-09-16 23:45:00") %>%
    select(ComplaintType, CreatedDate, City)

head_(q)
ComplaintTypeCreatedDateCity
Noise - Street/Sidewalk2014-11-12 11:59:56BRONX
Taxi Complaint2014-11-12 11:59:40BROOKLYN
Noise - Commercial2014-11-12 11:58:53BROOKLYN
Noise - Commercial2014-11-12 11:58:26NEW YORK
Noise - Street/Sidewalk2014-11-12 11:58:14NEW YORK

 

使用strftime从时间戳中拉出小时单位

# dt[, hour := strftime('%H', CreatedDate), .(ComplaintType, CreatedDate, City)]

q <- data %>% mutate(hour = strftime('%H', CreatedDate)) %>% 
            select(ComplaintType, CreatedDate, City, hour)

head_(q)

 

ComplaintTypeCreatedDateCityhour
Noise - Street/Sidewalk2015-11-04 02:13:04BROOKLYN02
Senior Center Complaint2015-11-04 02:12:05ELMHURST02
Noise - Commercial2015-11-04 02:11:46JAMAICA02
Noise - Street/Sidewalk2015-11-04 02:11:02BROOKLYN02
Noise - Street/Sidewalk2015-11-04 02:10:45NEW YORK02

 

汇总时间序列

首先,创建一个时间戳记四舍五入到前15分钟间隔的新列

# Using lubridate::new_period()
# dt[, interval := CreatedDate - new_period(900, 'seconds')][, .(CreatedDate, interval)]

q <- data %>% 
     mutate(interval = sql("datetime((strftime('%s', CreatedDate) / 900) * 900, 'unixepoch')")) %>%                     
     select(CreatedDate, interval)

head_(q, 10)
CreatedDateinterval
2015-11-04 02:13:042015-11-04 02:00:00
2015-11-04 02:12:052015-11-04 02:00:00
2015-11-04 02:11:462015-11-04 02:00:00
2015-11-04 02:11:022015-11-04 02:00:00
2015-11-04 02:10:452015-11-04 02:00:00
2015-11-04 02:09:072015-11-04 02:00:00
2015-11-04 02:05:472015-11-04 02:00:00
2015-11-04 02:03:432015-11-04 02:00:00
2015-11-04 02:03:292015-11-04 02:00:00
2015-11-04 02:02:172015-11-04 02:00:00

 

绘制2003年的结果