R语言法国足球联赛球员多重对应分析(MCA)

203 阅读4分钟

原文链接:tecdat.cn/?p=4167

原文出处:拓端数据部落公众号

 

数据集

 

fooball球员在场上的位置

数据来自国际足联的视频游戏FIFA 。游戏的特点是在游戏的各个方面评价每个球员的能力。等级是量化变量(介于0和100之间),但我们将它们转换为分类变量。所有能力都被编码在4个等级:1.低/ 2.平均/ 3.高/ 4.非常高。

加载和准备数据

首先将数据集加载到data.frame中。 

第二行也将整数列转换为因子。 

数据分析

我们的数据集包含分类变量。适当的数据分析方法是多重对应分析。 

产生了三个图:类别和球员在坐标轴上的投影,以及变量的图形。 

 

这里显然有两个球员集群。 

解释

显然,我们必须先将分析减少到一定数量的维度。选择变量数量的方法是肘法。我们绘制特征值的图形:

> barplot(mca_no_gk $ eig $ eigenvalue)

特征值图

围绕第三或第四个特征值,我们观察到一个值的下降(这是MCA解释的方差的百分比)。因此,我们选择将我们的分析减少到前三个因子。

> plot.MCA(mca_no_gk  )

在前两个因子坐标轴上投影 

我们可以通过在图表上读取最有代表性的变量名称来开始分析。 

第一因子的最有代表性的能力是:在轴的右侧攻击能力 的能力较弱,左边的能力非常强。因此,我们的解释是,因子1根据他们的进攻能力(左侧更好的攻击能力,右侧更弱)来区分球员。我们对第2因子进行同样的分析,并得出结论:根据他们的防守能力来区分球员:在顶部会发现更好的防守者,而在底部会发现弱防守者。

补充变量也可以帮助确认我们的解释,特别是位置变量:

> plot.MCA(mca_no_gk,invisible = c(“ind”,“var”))

在前两个维度上投影补充变量

实际上,我们在图的左边部分发现了攻击位置(LW,ST,RW),并在图顶部看到了防守位置(CB,LB,RB)。

如果我们的解释是正确的,那么图表中第二个维度上的投影就可以代表球员的整体水平。最强的球员将会在左上角找到,而较弱的将会在右下角找到。“overall_4”位于左上角,“overall_1”位于右下角。此外,在补充变量的图表中,我们观察到“法甲联赛第一”(Ligue 1)位于左上方,而“Ligue 2”位于右下方。

 

> plot.MCA(mca_no_gk,invisible = c(“ind”,“var”),axes = c2,3))

在第二和第三维度上投影变量

最具代表性的第三维度是技术上的弱点:技术能力较低的球员(运球,控球等)位于坐标轴的末端,而这些能力中成绩最高的球员往往被发现在坐标轴的中心:

在第二和第三因子坐标轴上投影补充变量

在补充变量的帮助下,中场平均拥有最高的技术能力,而前锋(ST)和后卫(CB,LB,RB)似乎一般都不以球控技术着称。

参考Mathieu Valbuena在坐标轴1和坐标轴2上生成的图形:

1和2因子坐标轴补充变量 

第2和3因子坐标轴

所以,马蒂厄·瓦尔布纳似乎有很好的进攻技巧,但他也有很好的整体水平(他在第二因子上的投射比较高)。他也位于第三坐标轴的中心,这表示他具有良好的技术能力。因此,最适合他的位置(统计上)是中场位置(CAM,LM,RM)。再加上几行代码,我们可以找到法国联赛中最相似的球员:

我们得到:Ladislas Douniama,FrédéricSammaritano,Florian Thauvin,N'GoloKanté和Wissam Ben Yedder。


最受欢迎的见解

1.matlab偏最小二乘回归(PLSR)和主成分回归(PCR)

2.R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析

3.主成分分析(PCA)基本原理及分析实例

4.基于R语言实现LASSO回归分析

5.使用LASSO回归预测股票收益数据分析

6.r语言中对lasso回归,ridge岭回归和elastic-net模型

7.r语言中的偏最小二乘回归pls-da数据分析

8.r语言中的偏最小二乘pls回归算法

9.R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA)