【高等数学】二重积分证明不等式

375 阅读1分钟

f(x),g(x)f(x),g(x)[a,b][a,b]上连续,利用二重积分证明: (abf(x)g(x)dx)2abf2(x)dxabg2(x)dx.(\int_a^b f(x)g(x)dx)^2 \le \int_a^bf^2(x)dx \int_a^bg^2(x)dx.


证明如下:

f(x),g(x)\because f(x),g(x)在区间上连续.

rR,ab[f(x)+rg(x)]dx\therefore \exist r \in R,\int_a^b [f(x)+rg(x)]dx在区间上连续,且ab[f(x)+rg(x)]2dx0.\int_a^b [f(x)+rg(x)]^2dx \ge 0.

将以上不等式展开,则

abf2(x)dx+2abrf(x)g(x)dx+r2abg2(x)dx0.\int_a^bf^2(x)dx+2\int_a^b rf(x)g(x)dx+r^2\int_a^bg^2(x)dx\ge 0.

将这个不等式左侧看作关于rr的函数,则

H(x)=abg2(x)dxr2+2abf(x)g(x)dxr+abf2(x)dx.H(x)=\int_a^bg^2(x)dx\cdot r^2+2\int_a^b f(x)g(x)dx\cdot r+\int_a^bf^2(x)dx.

所以H(x)H(x)是在坐标系中开口向上的二次函数,要使H(x)H(x)在区间恒大于等于0,则

δ=b24ac=[2abf(x)g(x)dx]24abg2(x)dxabf2(x)dx0.\delta = b^2-4ac=[2\int_a^b f(x)g(x)dx]^2-4\int_a^bg^2(x)dx\cdot \int_a^bf^2(x)dx \le0.

[abf(x)g(x)dx]2abg2(x)dxabf2(x)dx.\Rightarrow [\int_a^b f(x)g(x)dx]^2\le \int_a^bg^2(x)dx\cdot \int_a^bf^2(x)dx.

证毕!