代码找了好多,但是没有java版本的
public static void TestSift(Mat image1,Mat image2) {
Mat clone1=image1.clone();
Mat src1=image1.clone();
Mat clone2=image2.clone();
Mat src2=image2.clone();
Imgproc.GaussianBlur(clone1, clone1, new Size(3, 3), 0, 0);
Imgproc.cvtColor(clone1, clone1,Imgproc.COLOR_BGR2GRAY);
Imgproc.GaussianBlur(clone2, clone2, new Size(3, 3), 0, 0);
Imgproc.cvtColor(clone2, clone2,Imgproc.COLOR_BGR2GRAY);
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
Mat des1=new Mat();
Mat des2=new Mat();
// 匹配的点数
SIFT sift=SIFT.create(200);
//提取对象关键点
// sift.detect(clone1,keypoints1);
// sift.detect(clone2,keypoints2);
//提取描述子
// sift.compute(clone1,keypoints1, des1);
// sift.compute(clone2,keypoints2, des2);
sift.detectAndCompute(clone1, new Mat(), keypoints1, des1);
sift.detectAndCompute(clone2, new Mat(), keypoints2, des2);
MatOfDMatch md=new MatOfDMatch();
FlannBasedMatcher matcher=FlannBasedMatcher.create();
matcher.match(des1, des2, md);
double maxDist = 0;
double minDist = 50;
DMatch[] mats = md.toArray();
List<DMatch> bestMatches= new ArrayList<DMatch>();
for (int i = 0; i < mats.length; i++) {
double dist = mats[i].distance;
if (dist < minDist) {
minDist = dist;
}
if (dist > maxDist) {
maxDist = dist;
}
}
System.out.println("max_dist : "+maxDist);
System.out.println("min_dist : "+minDist);
double threshold = 3 * minDist;
double threshold2 = 2 * minDist;
if (threshold2 >= maxDist){
threshold = minDist * 1.1;
}
else if (threshold >= maxDist){
threshold = threshold2 * 1.4;
}
if(0d==threshold) {
threshold=0.3*maxDist;
}
System.out.println("Threshold : "+threshold);
for (int i = 0; i < mats.length; i++)
{
//distance越小,代表DMatch的匹配率越高,
Double dist = (double) mats[i].distance;
System.out.println(String.format(i + " match distance best : %s", dist));
if (dist <= threshold)
{
bestMatches.add(mats[i]);
System.out.println(String.format(i + " best match added : %s", dist));
}
}
md.fromList(bestMatches);
Mat result=new Mat();
Features2d.drawMatches(src1, keypoints1, src2, keypoints2, md, result);
HighGui.imshow("SIFT", result);
}
knn写法
public static void TestSiftKnn(Mat image1,Mat image2) {
//FastFeatureDetector detector = FastFeatureDetector.create(FastFeatureDetector.FAST_N);
Mat clone1=image1.clone();
Mat src1=image1.clone();
Mat clone2=image2.clone();
Mat src2=image2.clone();
Imgproc.GaussianBlur(clone1, clone1, new Size(3, 3), 0, 0);
Imgproc.cvtColor(clone1, clone1,Imgproc.COLOR_BGR2GRAY);
Imgproc.GaussianBlur(clone2, clone2, new Size(3, 3), 0, 0);
Imgproc.cvtColor(clone2, clone2,Imgproc.COLOR_BGR2GRAY);
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
Mat des1=new Mat();
Mat des2=new Mat();
SIFT sift=SIFT.create(200);
//提取对象关键点
// sift.detect(clone1,keypoints1);
// sift.detect(clone2,keypoints2);
//提取描述子
// sift.compute(clone1,keypoints1, des1);
// sift.compute(clone2,keypoints2, des2);
sift.detectAndCompute(clone1, new Mat(), keypoints1, des1);
sift.detectAndCompute(clone2, new Mat(), keypoints2, des2);
MatOfDMatch md=new MatOfDMatch();
FlannBasedMatcher matcher=FlannBasedMatcher.create();
//matcher.match(des1, des2, md);
List<Mat> matList=new ArrayList<Mat>();
List<MatOfDMatch> mdList=new ArrayList<MatOfDMatch>();
matList.add(des1);
matcher.add(matList);
matcher.train();
matcher.knnMatch(des2, mdList, 2);
List<DMatch> dMatchList = new ArrayList<DMatch>();
Iterator<MatOfDMatch> ite=mdList.iterator();
while(ite.hasNext()) {
MatOfDMatch next=ite.next();
if (next.toArray()[0].distance < 0.2 * next.toArray()[1].distance) {
System.out.println(next.toArray()[0].distance+"->"+next.toArray()[1].distance);
dMatchList.add(next.toArray()[0]);
}else {
ite.remove();
}
}
md.fromList(dMatchList);
Mat result=new Mat();
// Features2d.drawMatches(src1, keypoints1, src2, keypoints2, md, result);
Features2d.drawMatchesKnn(src1, keypoints1, src2, keypoints2, mdList, result);
HighGui.imshow("SIFT", result);
}