进程与线程

103 阅读10分钟

进程与线程

1.1 进程

运行中的程序称之为进程

1.1.1 进程的三种基本状态

  • 运行(Running):进程正在占用CPU
  • 就绪(Ready):进程已分配到除CPU以外的所有必要的资源,等待其它进程执行完
  • 阻塞(Blocked):该进程正在等待某一个时间执行完(如等待输入或者输出等等)而暂时停止运行,这时候即使给到CPU控制权也无法运行

其它的几种状态:

  • 创建(New):进程正在被创建
  • 就绪挂起:进程在外存(硬盘)并等待某个事件的出现
  • 阻塞挂起:进程在外存(硬盘),但只要进入内存,即刻立刻运行
  • 结束(Exit):系统正在结束

备注:如果有大量处于阻塞状态的进程,进程可能会占用着物理内存空间,显然不是我们所希望的,毕竟物理内存空间是有限的,被阻塞状态的进程占用着物理内存就一种浪费物理内存的行为。所以,在虚拟内存管理的操作系统中,通常会把阻塞状态的进程的物理内存空间换出到硬盘,等需要再次运行的时候,再从硬盘换入到物理内存。进程挂起的原因还包括如下两个:通过 sleep 让进程间歇性挂起,其工作原理是设置一个定时器,到期后唤醒进程;用户希望挂起一个程序的执行,比如在 Linux 中用 Ctrl+Z 挂起进程。

进程状态变迁如下图:

image-20210616205424095

1.1.2 进程的控制结构

PCB(process control block,PCB)是进程存在的唯一标识,一个进程的产生必然会产生一个与之对应的PCB,进程结束,对应的PCB也会消失。以下为PCB所包含的信息:

  • 进程描述信息
    • 进程标识符:标识各个进程,每个进程都有一个并且唯一的标识符;
    • 用户标识符:进程归属的用户,用户标识符主要为共享和保护服务;
  • 进程控制信息和管理信息(进程的状态、优先级等等)
    • 进程当前状态,如 new、ready、running、waiting 或 blocked 等;
    • 进程优先级:进程抢占 CPU 时的优先级;
  • 资源分配清单
    • 有关内存地址空间或虚拟地址空间的信息,所打开文件的列表和所使用的 I/O 设备信息。
  • CPU相关信息
    • CPU 中各个寄存器的值,当进程被切换时,CPU 的状态信息都会被保存在相应的 PCB 中,以便进程重新执行时,能从断点处继续执行。

1.1.3 进程的控制

  • 创建进程

    操作系统允许一个进程创建另一个进程,而且允许子进程继承父进程所拥有的资源,当子进程被终止时,其在父进程处继承的资源应当还给父进程。同时,终止父进程时同时也会终止其所有的子进程。

    • 为新进程分配一个唯一的进程标识号,并申请一个空白的 PCB,PCB 是有限的,若申请失败则创建失败;
    • 为进程分配资源,此处如果资源不足,进程就会进入等待状态,以等待资源;
    • 初始化 PCB;
    • 如果进程的调度队列能够接纳新进程,那就将进程插入到就绪队列,等待被调度运行
  • 终止进程

    进程可以有 3 种终止方式:正常结束、异常结束以及外界干预(信号 kill 掉)。

    • 查找需要终止的进程的 PCB;
    • 如果处于执行状态,则立即终止该进程的执行,然后将 CPU 资源分配给其他进程;
    • 如果其还有子进程,则应将其所有子进程终止;
    • 将该进程所拥有的全部资源都归还给父进程或操作系统;
    • 将其从 PCB 所在队列中删除
  • 阻塞进程

    当进程需要等待某一事件完成时,它可以调用阻塞语句把自己阻塞等待。而一旦被阻塞等待,它只能由另一个进程唤醒。

    • 找到将要被阻塞进程标识号对应的 PCB;
    • 如果该进程为运行状态,则保护其现场,将其状态转为阻塞状态,停止运行;
    • 将该 PCB 插入的阻塞队列中去
  • 唤醒进程

    进程由「运行」转变为「阻塞」状态是由于进程必须等待某一事件的完成,所以处于阻塞状态的进程是绝对不可能叫醒自己的。如果某进程正在等待 I/O 事件,需由别的进程发消息给它,则只有当该进程所期待的事件出现时,才由发现者进程用唤醒语句叫醒它。

    • 在该事件的阻塞队列中找到相应进程的 PCB;
    • 将其从阻塞队列中移出,并置其状态为就绪状态;
    • 把该 PCB 插入到就绪队列中,等待调度程序调度

1.1.4 进程的上下文切换

一个进程切换到另外一个进程运行就叫上下文切换

  • 保存的上下文
    • 内核态资源:内核堆栈、CPU寄存器等
    • 用户态资源:虚拟内存、栈、全局变量等
  • 切换发生的场景
    • 时间片耗尽
    • 资源不足,等待可用资源
    • 调用sleep等方法,被挂起时
    • 硬件中断

1.2 线程

线程就是进程中的一条执行流程

1.2.1 线程的实现

  • 用户线程(User Thread:在用户空间实现的线程,不是由内核管理的线程,是由用户态的线程库来完成线程的管理;
  • 内核线程(Kernel Thread:在内核中实现的线程,是由内核管理的线程;
  • 轻量级进程(LightWeight Process:在内核中来支持用户线程;

1.2.2 线程与进程的比较

  • 进程是资源(包括内存、打开的文件等)分配的单位,线程是 CPU 调度的单位;
  • 进程拥有一个完整的资源平台,而线程只独享必不可少的资源,如寄存器和栈;
  • 线程同样具有就绪、阻塞、执行三种基本状态,同样具有状态之间的转换关系;
  • 线程能减少并发执行的时间和空间开销;

对于,线程相比进程能减少开销,体现在:

  • 线程的创建时间比进程快,因为进程在创建的过程中,还需要资源管理信息,比如内存管理信息、文件管理信息,而线程在创建的过程中,不会涉及这些资源管理信息,而是共享它们;
  • 线程的终止时间比进程快,因为线程释放的资源相比进程少很多;
  • 同一个进程内的线程切换比进程切换快,因为线程具有相同的地址空间(虚拟内存共享),这意味着同一个进程的线程都具有同一个页表,那么在切换的时候不需要切换页表。而对于进程之间的切换,切换的时候要把页表给切换掉,而页表的切换过程开销是比较大的;
  • 由于同一进程的各线程间共享内存和文件资源,那么在线程之间数据传递的时候,就不需要经过内核了,这就使得线程之间的数据交互效率更高了;

1.3 调度

1.3.1 调度时机

在进程的生命周期中,当进程从一个运行状态到另外一状态变化的时候,其实会触发一次调度。

1.3.2 调度原则

原则一:如果运行的程序,发生了 I/O 事件的请求,那 CPU 使用率必然会很低,因为此时进程在阻塞等待硬盘的数据返回。这样的过程,势必会造成 CPU 突然的空闲。所以,为了提高 CPU 利用率,在这种发送 I/O 事件致使 CPU 空闲的情况下,调度程序需要从就绪队列中选择一个进程来运行。

原则二:有的程序执行某个任务花费的时间会比较长,如果这个程序一直占用着 CPU,会造成系统吞吐量(CPU 在单位时间内完成的进程数量)的降低。所以,要提高系统的吞吐率,调度程序要权衡长任务和短任务进程的运行完成数量。

原则三:从进程开始到结束的过程中,实际上是包含两个时间,分别是进程运行时间和进程等待时间,这两个时间总和就称为周转时间。进程的周转时间越小越好,如果进程的等待时间很长而运行时间很短,那周转时间就很长,这不是我们所期望的,调度程序应该避免这种情况发生。

原则四:处于就绪队列的进程,也不能等太久,当然希望这个等待的时间越短越好,这样可以使得进程更快的在 CPU 中执行。所以,就绪队列中进程的等待时间也是调度程序所需要考虑的原则。

原则五:对于鼠标、键盘这种交互式比较强的应用,我们当然希望它的响应时间越快越好,否则就会影响用户体验了。所以,对于交互式比较强的应用,响应时间也是调度程序需要考虑的原则。

针对上面的五种调度原则,总结成如下:

  • CPU 利用率:调度程序应确保 CPU 是始终匆忙的状态,这可提高 CPU 的利用率;
  • 系统吞吐量:吞吐量表示的是单位时间内 CPU 完成进程的数量,长作业的进程会占用较长的 CPU 资源,因此会降低吞吐量,相反,短作业的进程会提升系统吞吐量;
  • 周转时间:周转时间是进程运行和阻塞时间总和,一个进程的周转时间越小越好;
  • 等待时间:这个等待时间不是阻塞状态的时间,而是进程处于就绪队列的时间,等待的时间越长,用户越不满意;
  • 响应时间:用户提交请求到系统第一次产生响应所花费的时间,在交互式系统中,响应时间是衡量调度算法好坏的主要标准

1.3.3 调度算法

调度算法分类

  • 非抢占式调度算法挑选一个进程,然后让该进程运行直到被阻塞,或者直到该进程退出,才会调用另外一个进程,也就是说不会理时钟中断这个事情。
  • 抢占式调度算法挑选一个进程,然后让该进程只运行某段时间,如果在该时段结束时,该进程仍然在运行时,则会把它挂起,接着调度程序从就绪队列挑选另外一个进程。这种抢占式调度处理,需要在时间间隔的末端发生时钟中断,以便把 CPU 控制返回给调度程序进行调度,也就是常说的时间片机制

常用算法

  • 先来先服务优先调度算法
  • 最短作业优先调度算法
  • 高响应比优先调度算法
  • 时间片轮转调度算法
  • 最高优先级调度算法
  • 多级反馈队列调度算法