粒子群优化算法-Python版本和Matlab函数 particleswarm 调用
前两天分享了粒子群优化算法的原理和Matlab原理实现,本文分享一下Python代码下的PSO实现以及Matlab下的粒子群函数。
前文参看:粒子群优化算法(PSO)
以Ras函数(Rastrigin's Function)为目标函数,求其在x1,x2∈[-5,5]上的最小值。这个函数对模拟退火、进化计算等算法具有很强的欺骗性,因为它有非常多的局部最小值点和局部最大值点,很容易使算法陷入局部最优,而不能得到全局最优解。如下图所示,该函数只在(0,0)处存在全局最小值0。
Python代码实现
import numpy as npimport matplotlib.pyplot as plt
# 目标函数定义def ras(x): y = 20 + x[0] ** 2 + x[1] ** 2 - 10 * (np.cos(2 * np.pi * x[0]) + np.cos(2 * np.pi * x[1])) return y
# 参数初始化w = 1.0c1 = 1.49445c2 = 1.49445
maxgen = 200 # 进化次数sizepop = 20 # 种群规模
# 粒子速度和位置的范围Vmax = 1Vmin = -1popmax = 5popmin = -5
# 产生初始粒子和速度pop = 5 * np.random.uniform(-1, 1, (2, sizepop))v = np.random.uniform(-1, 1, (2, sizepop))
fitness = ras(pop) # 计算适应度i = np.argmin(fitness) # 找最好的个体gbest = pop # 记录个体最优位置zbest = pop[:, i] # 记录群体最优位置fitnessgbest = fitness # 个体最佳适应度值fitnesszbest = fitness[i] # 全局最佳适应度值
# 迭代寻优t = 0record = np.zeros(maxgen)while t < maxgen:
# 速度更新 v = w * v + c1 * np.random.random() * (gbest - pop) + c2 * np.random.random() * (zbest.reshape(2, 1) - pop) v[v > Vmax] = Vmax # 限制速度 v[v < Vmin] = Vmin
# 位置更新 pop = pop + 0.5 * v pop[pop > popmax] = popmax # 限制位置 pop[pop < popmin] = popmin
''' # 自适应变异 p = np.random.random() # 随机生成一个0~1内的数 if p > 0.8: # 如果这个数落在变异概率区间内,则进行变异处理 k = np.random.randint(0,2) # 在[0,2)之间随机选一个整数 pop[:,k] = np.random.random() # 在选定的位置进行变异 '''
# 计算适应度值 fitness = ras(pop)
# 个体最优位置更新 index = fitness < fitnessgbest fitnessgbest[index] = fitness[index] gbest[:, index] = pop[:, index]
# 群体最优更新 j = np.argmin(fitness) if fitness[j] < fitnesszbest: zbest = pop[:, j] fitnesszbest = fitness[j]
record[t] = fitnesszbest # 记录群体最优位置的变化
t = t + 1
# 结果分析print(zbest)
plt.plot(record, 'b-')plt.xlabel('generation')plt.ylabel('fitness')plt.title('fitness curve')plt.show()
结果为
[0.99699579 0.00148844]
可以知道求解的点非最小值,算法陷入了局部最小值。
删除自适应变异部分的注释,运行后结果如下,可以看出收敛到全局最优解。
[0.00022989 0.00014612]
Matlab有个自带的粒子群优化函数particleswarm也可以使用。本例的代码如下:
y = @(x) 20 + x(1).^2 + x(2).^2 - 10*(cos(2*pi*x(1))+cos(2*pi*x(2)));rng defaultoptions = optimoptions('particleswarm','SwarmSize',200,'HybridFcn',@fmincon,'MaxIterations',200, 'Display','iter');lb = [-5 -5]; % 这是变量的下限ub = [5 5]; % 这是变量的上限[x,fval,exitflag,output] = particleswarm(y,length(lb),lb,ub,options);
结果如下
particleswarm详细资料参考:
www.mathworks.com/help/gads/p…
Matlab文档