1.概述
网络层只把分组发送到目的主机,但是真正通信的并不是主机而是主机中的进程。传输层提供了进程间的逻辑通信,传输层向高层用户屏蔽了下面网络层的核心细节,是应用程序看起来像是在两个传输层实体之间有一条端到端的逻辑通信信道。
2.UDP和TCP的特点
- 用户数据报协议UDP(User Datagram Protocol)是无连接的,尽最大可能交付,没有拥塞控制,面向报文(对于应用程序传下来的报文不合并也不拆分,只是添加UDP头部),支持一对一,一对多,多对一和多对多的交互通信
- 传输控制协议TCP(Transmission Control Protocol)是面向连接的,提供可靠交付,有流量控制,拥塞控制,提供双全工通信,面向字节流(把应用层传下来的报文看成字节流,把字节流组织成大小不等的数据块),每一条TCP连接注意能使点对点
3.UDP首部格式
首部字段只有8个字节,包括源端口,目的端口,长度,检验和。12字节的伪首部是为了计算检验和临时添加的
4.TCP首部格式
-
序号: 用于对字节流进行编号,例如序号为301,表示第一个字节的编号是301,如果携带的数据长度为100字节,那么下一个报文段的学号应为501
-
确认号: 期望收到的下一个报文段的序号。例如B正确收到A发送来的报文段,序列号为501,携带的数据长度为200字节,因此B期望下一个报文段的序列号为701,B发送给A的确认报文段中确认号就为701
-
数据偏移: 指的是数据部分距离报文段起始处的偏移量,实际上指的是首部的长度
-
确认ACK: 当ACK=1时确认号字段有效,否则无效。TCP规定,在连接建立后所有传送的报文段都必须把ACK置为1
-
同步SYN: 在连接建立时用来同步序号。当SYN=1,ACK=0时表示这是一个连接请求报文段。若对方同一建立连接,则响应报文中SYN=1,ACK=1
-
终止FIN: 用来释放一个连接,当FIN=1时,表示此报文段的发送方的诗句已发送完毕,并要求释放连接
-
窗口: 窗口值作为接收方让发送方设置其发送窗口的依据。之所以要有这个限制,是因为接收方的数据缓存空间是有限的
假设A为客户端,B为服务端
- 首先B处于监听状态,等待客户的连接请求
- A向B发送连接请求报文,SYN=1,ACK=0,选择一个初始的序号X
- B收到连接请求报文,如果同意建议连接,则向A发送连接确认报文,SYN=1,ACK=1,确认号为x+1,同时要选择一个初始的序号y
- A收到B的连接确认报文后,还要向B发出确认,确认号为y+1,序号为x+1
- B收到A的确认后,连接建立
4.1 三次握手的原因
第三次握手是为了防止失效的连接请求到达服务器,让服务器错误打开连接
客户端发送的连接请求如果在网络中滞留,那么就会隔很长一段时间才能收到服务器端发回的链接确认。客户端等待一个超时重传时间之后,就会重新请求连接。但是这个直流的连接请求最后还是会到达服务器,如果不进行三次握手,那么这个服务器就会打开两个连接。如果有第三次握手,客户端会忽略服务器之后发送的对滞留连接请求的连接确认,不进行第三次握手,因此就不会再次打开连接
5.TCP的四次挥手
一下描述不讨论序号和确认号,因为序号和确认号的规则比较简单。并且不讨论ACK,因为ACK在连接建立之后都为1
- A发送连接释放报文,FIN=1
- B收到之后发出确认,此时TCP属于半关闭状态,B能向A发送数据但A不能向B发送数据
- 当B不在需要连接时,发送连接释放报文,FIN=1
- 当A收到后发出确认,进入TIME-WAIT状态,等待2MSL(最大报文存活时间)后释放连接
- B收到A的确认后释放连接
5.1 四次挥手的原因
客户端发送了FIN连接释放报文之后,服务器收到了这个报文,就进入了CLOSE-WAIT状态。这个状态是为了让服务端发送还未传送完毕的数据,传送完毕之后,服务器会发送FIN连接释放报文
5.2 TIME_WIAT
客户端接收到服务器端的FIN报文进入此状态每次是并不是直接进入CLOSED状态,还需要等待一个时间计时器设置的时间2MSL,这么做有两个理由
- 确保最后一个确认报文能够到达。如果B没收到A发送来的确认报文,那么就会重新发送连接释放请求报文,A等待一段时间就是为了处理这种情况
- 等待一段时间是为了让本连接持续时间内所产生的所有报文都从网络中消失,使得下一个新的连接不会出现旧的连接请求报文
6.TCP可靠传输
TCP使用超时重传来实现可靠传输:如果一个已经发送的报文段在超时时间内没有收到确认,那么就重传这个报文段
- 一个报文段从发送再到接收到确认所经过的时间称为往返时间RTT,加权平均往返时间RTTs计算如下
其中,0≤a<1,RTTs随着a的增加更加容易收到RTT的影响 超时时间RTO应该略大于RTTs,TCP使用的超时时间计算如下
其中RTTd为偏差的甲醛平均值
7.TCP滑动窗口
窗口是缓存的一部分,用来暂时存放字节流
-
发送方和接收方各有一个窗口,接受方通过TCP报文段中的窗口字段告诉发送方自己的窗口大小,发送方根据这个值和其他信息设置自己的窗口大小
-
发送窗口内的字节都允许被发送,接受窗口内的字节都允许被接受
-
如果发送窗口左部的字节已经发送并且收到了确认,那么就将发送矿口向右滑动一定距离,知道左部第一个字节不是已发送并且已确认状态;接收窗口的滑动类似,接受窗口左部字节已经发送确认并交付主机,就向右滑动接受窗口
-
接受窗口只会对窗口内最后一个按序到达的字节进行确认,例如接受窗口已经收到的字节为{31,34,35},其中{31}按序到达,而{34,35}就不是,因此只对字节31进行确认。发送方得到一个字节的确认之后,就知道这个字节之前的所有字节都已经被接收
8.流量控制
流量控制是为了控制发送方速率,保证接收方来得及接受
- 接收方发送的确认报文中的窗口子窜可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为0,则发送方不能发送数据
9.TCP拥塞控制
如果网络出现拥塞,分组将会丢失,此时发送方会继续重传,从而导致网络拥塞程度更高
- 因此出现拥塞时,应该控制发送方的速率
- 这一点和流量控制很像,但是出发点不同
- 流量控制是为了让接收方来得及接受,而拥塞控制是为了降低整个网络的拥塞程度
TCP主要通过四个算法来进行拥塞控制: 慢开始,拥塞避免,快重传,快恢复
发送方需要维护一个叫做拥塞窗口(cwnd)的状态变量,注意拥塞窗口与发送方窗口的区别: 拥塞窗口只是一个状态变量,实际决定发送方能发送多少数据的是发送方窗口
为了便于讨论,做如下假设:
- 接收方有足够大的接收缓存,因此不会发生流量控制
- 虽然TCP的窗口基于字节,但是这里设窗口的大小单位为报文段
9.1 慢开始与拥塞避免
发送的最初执行慢开始,令cwnd=1,发送方只能发送1个报文段;当收到确认收,将cwnd加倍,因此之后发送方能够发送的报文段数量为:2,4,8...
注意到慢开始每个轮次都将cwnd加倍,这样会让cwnd增长速度非常快,从而使得发送方发送的速度增长速度过快,网络拥塞的可能性也就高。设定一个慢开始门限ssthresh,当cwnd≥ssthresh时,进入拥塞避免,每次轮次只将cwnd加1
如果出现了超时,责令ssthresh = cwnd / 2 ,然后重新执行慢开始
9.2 快重传与快恢复
-
在接受方,要求每次接收到的报文段都应该对最后一个已收到的有序报文段进行确认
- 例如已经接收到M1和M2,此时收到M4,应当发送对M2的确认
-
在发送发,如果收到三个重复确认,那么可以知道下一个报文段丢失,此时执行快重传,立即重传下一个报文段
- 例如收到三个M2,则M3丢失,立即重传M3
-
在这种情况下,只是丢失个别报文段,而不是网络拥塞。因此执行快恢复
- 令ssthresh = cwnd / 2 , cwnd = ssthresh ,注意到此时直接进入拥塞避免
-
慢开始和快恢复的快慢指的是cwnd的设定值,而不是cwnd的增长速率。慢开始cwnd设定为1,而快恢复cwnd设定为ssthresh