动态规划ing-打家劫舍|Java 刷题打卡

182 阅读3分钟

本文正在参加「Java主题月 - Java 刷题打卡」,详情查看<活动链接>

【Java 刷题打卡 】刷题比玩游戏好多了,成就感越来越强,每天坚持刷几道题,每天锻炼30分钟,等8块腹肌,等大厂offer.

那就干吧! 这个专栏都是刷的题目都是关于动态规划的,我会由浅入深、循序渐进,刷题就是这样需要连续不断的记忆--艾宾浩斯记忆法2121112。动态规划的内容不多,但是都是每个程序员必备的

这是一道比较简单的题目😄😄😄 \color{green}{这是一道比较简单的题目😄 😄 😄 ~}

什么题可以选择动态规划来做?

1.计数

  • 有多少种方式走到右下角
  • 有多少种方法选出k个数是的和是sum

2.求最大值最小值

  • 从左上角走到右下角路径的最大数字和
  • 最长上升子序列长度

3.求存在性

  • 取石子游戏,先手是否必胜
  • 能不能选出k个数使得和是sum

4.综合运用

  • 动态规划 + hash
  • 动态规划 + 递归
  • ...

leecode 198. 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

 

示例 1:

输入:[1,2,3,1]

输出:4

解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。   偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入:[2,7,9,3,1]

输出:12

解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。   偷窃到的最高金额 = 2 + 9 + 1 = 12 。


--

❤️❤️❤️❤️

2.1. 动态规划组成部分1:确定状态

简单的说,解动态规划的时候需要开一个数组,数组的每个元素f[i]或者f[i][j]代表什么,类似数学题中x, y, z代表什么

最后一步

假如有k户,要求不能连续偷,那么有两种情况

  1. d[k -2] + k户的钱 // 一户都不剩
  2. d[k-1] // 还剩下一户

只需要求出两种情况的最大值就行啦。

1.2. 动态规划组成部分2:转移方程

d[k] = max{d[k-2] + k, d[k-1]

1.3. 动态规划组成部分3:初始条件和边界情况

只有一家偷一家

两人偷比较大的

1.4. 动态规划组成部分4:计算顺序

依次计算。

😄😄😄 \color{green}{😄 😄 😄 ~}

参考代码

NICE太简单啦😄😄😄 \color{red}{NICE太简单啦😄 😄 😄 ~}

java版

class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        }
        int[] dp = new int[length];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[length - 1];
    }
}

真心感谢帅逼靓女们能看到这里,如果这个文章写得还不错,觉得有点东西的话

求点赞👍 求关注❤️ 求分享👥 对8块腹肌的我来说真的 非常有用!!!

如果本篇博客有任何错误,请批评指教,不胜感激 !❤️❤️❤️❤️