线程池(重点)
线程池:三大方法、7大参数、4种拒绝策略
池化技术
程序的运行,本质:占用系统的资源!优化资源的使用!=>池化技术
线程池、jdbc的连接池、内存池、对象池///......创建、销毁.十分浪费资源
池化技术:事先准备好一些资源,有人要用,就来我这里拿,用完之后还给我。
默认大小:2
max:
线程池的好处:
1、降低资源的消耗
2、提高响应的速度
3、方便管理.
线程复用、可以控制最大并发数、管理线程
线程池:三大方法
package com.chao.pool;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
//Executors 工具类、3大方法
public class Demo01 {
public static void main(String[] args) {
// ExecutorService threadPool = Executors.newSingleThreadExecutor();//单个线程
ExecutorService threadPool = Executors.newFixedThreadPool(5); //创建一个固定的线程池的大小
// ExecutorService threadPool = Executors.newCachedThreadPool();//可伸缩的,遇强则强,遇弱则弱
try {
for (int i = 0; i < 100; i++) {
//new Thread().start();
//使用了线程池之后,使用线程池来创建线程
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName()+" ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
7大参数
源码分析
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE, //21亿 OOM溢出
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
//本质:ThreadPoolExecutor
public ThreadPoolExecutor(int corePoolSize, //核心线程池大小
int maximumPoolSize,//最大核心线程池大小
long keepAliveTime, //超时了没有人调用就会释放
TimeUnit unit,//超时单位
BlockingQueue<Runnable> workQueue,//阻塞队列
ThreadFactory threadFactory,//线程工厂,创建线程的,一般不用动
RejectedExecutionHandler handler) {//拒绝策略
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
手动创建一个线程池
package com.chao.pool;
import java.util.concurrent.*;
//Executors 工具类、3大方法
public class Demo {
public static void main(String[] args) {
//自定义线程池!工作 ThreadPoolExecutor
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
3,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy()); //队列满了,尝试去和最早的竞争,也不会抛出异常!
try {
//最大承载:Deque + max
//超过:RejectedExecutionException
for (int i = 1; i <= 9; i++) {
//new Thread().start();
//使用了线程池之后,使用线程池来创建线程
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName()+" ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
4种拒绝策略
/**
* new ThreadPoolExecutor.AbortPolicy() //银行满了,还有人进来,不处理这个人的,抛出异常
* new ThreadPoolExecutor.CallerRunsPolicy() //哪来的去哪里!
* new ThreadPoolExecutor.DiscardPolicy() //队列满了,丢掉任务,不会抛出异常!
* new ThreadPoolExecutor.DiscardOldestPolicy() //队列满了,尝试去和最早的竞争,也不会抛出异常!
*/
小结和拓展
池的最大的大小线程如何去设置!
了解:IO密集型,CPU密集型:(调优)
package com.chao.pool;
import java.util.concurrent.*;
public class Demo {
public static void main(String[] args) {
//自定义线程池!工作 ThreadPoolExecutorpython train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/faster_rcnn_inception_v2_pets.config
//最大线程到底该如何定义
//1、CPU 密集型,几核,就是几,可以保持CPU的效率最高! 16条线程同时执行!
//2、IO 密集型 > 判断你的程序中十分耗IO的线程,
// 程序 15个大型任务 io十分占用资源!
//获取CPU的核数
System.out.println(Runtime.getRuntime().availableProcessors());
ExecutorService threadPool = new ThreadPoolExecutor(
2,
Runtime.getRuntime().availableProcessors(),
3,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy()); //队列满了,尝试去和最早的竞争,也不会抛出异常!
try {
//最大承载:Deque + max
//超过:RejectedExecutionException
for (int i = 1; i <= 9; i++) {
//new Thread().start();
//使用了线程池之后,使用线程池来创建线程
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName()+" ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}