Sentinel 快速入门

1,420 阅读11分钟

Sentinel 简介

随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。

Sentinel 具有以下特征:

  • 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
  • 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
  • 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
  • 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

Sentinel 的主要特性:

sentinel 特征.png

Sentinel 的开源生态:

sentinel 生态.png

Sentinel 分为两个部分:

  • 核心库(Java 客户端)不依赖任何框架/库,能够运行于所有 Java 运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。
  • 控制台(Dashboard)基于 Spring Boot 开发,打包后可以直接运行,不需要额外的 Tomcat 等应用容器。

Sentinel、Hystrix、resilience4j 对比

功能对比

SentinelHystrixresilience4j
隔离策略信号量隔离(并发控制)线程池隔离/信号量隔离信号量隔离
熔断降级策略基于慢调用比例、异常比例、异常数基于异常比例基于异常比例、响应时间
实时统计实现滑动窗口(LeapArray)滑动窗口(基于 RxJava)Ring Bit Buffer
动态规则配置支持多种数据源支持多种数据源有限支持
扩展性多个扩展点插件的形式接口的形式
基于注解的支持支持支持支持
限流基于 QPS,支持基于调用关系的限流有限的支持Rate Limiter
流量整形支持预热模式与匀速排队控制效果不支持简单的 Rate Limiter 模式
系统自适应保护支持不支持不支持
多语言支持Java/Go/C++JavaJava
Service Mesh 支持支持 Envoy/Istio不支持不支持
控制台提供开箱即用的控制台,可配置规则、实时监控、机器发现等简单的监控查看不提供控制台,可对接其它监控系统

Sentinel 名词

资源

资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。在接下来的文档中,我们都会用资源来描述代码块。

只要通过 Sentinel API 定义的代码,就是资源,能够被 Sentinel 保护起来。大部分情况下,可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。

规则

围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整。

流量控制

什么是流量控制

流量控制在网络传输中是一个常用的概念,它用于调整网络包的发送数据。然而,从系统稳定性角度考虑,在处理请求的速度上,也有非常多的讲究。任意时间到来的请求往往是随机不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。Sentinel 作为一个调配器,可以根据需要把随机的请求调整成合适的形状,如下图所示:

sentinel 流控.gif

流量控制设计理念

流量控制有以下几个角度:

  • 资源的调用关系,例如资源的调用链路,资源和资源之间的关系;
  • 运行指标,例如 QPS、线程池、系统负载等;
  • 控制的效果,例如直接限流、冷启动、排队等。

Sentinel 的设计理念是让您自由选择控制的角度,并进行灵活组合,从而达到想要的效果。

熔断降级

什么是熔断降级

除了流量控制以外,及时对调用链路中的不稳定因素进行熔断也是 Sentinel 的使命之一。由于调用关系的复杂性,如果调用链路中的某个资源出现了不稳定,可能会导致请求发生堆积,进而导致级联错误。

sentinel 熔断降级.png

Sentinel 和 Hystrix 的原则是一致的: 当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联故障。

熔断降级设计理念

在限制的手段上,Sentinel 和 Hystrix 采取了完全不一样的方法。

Hystrix 通过 线程池隔离 的方式,来对依赖(在 Sentinel 的概念中对应 资源)进行了隔离。这样做的好处是资源和资源之间做到了最彻底的隔离。缺点是除了增加了线程切换的成本(过多的线程池导致线程数目过多),还需要预先给各个资源做线程池大小的分配。

Sentinel 对这个问题采取了两种手段:

  • 通过并发线程数进行限制

和资源池隔离的方法不同,Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。当某个资源出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的线程完成任务后才开始继续接收请求。

  • 通过响应时间对资源进行降级

除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。

系统自适应保护

Sentinel 同时提供系统维度的自适应保护能力。防止雪崩,是系统防护中重要的一环。当系统负载较高的时候,如果还持续让请求进入,可能会导致系统崩溃,无法响应。在集群环境下,网络负载均衡会把本应这台机器承载的流量转发到其它的机器上去。如果这个时候其它的机器也处在一个边缘状态的时候,这个增加的流量就会导致这台机器也崩溃,最后导致整个集群不可用。

针对这个情况,Sentinel 提供了对应的保护机制,让系统的入口流量和系统的负载达到一个平衡,保证系统在能力范围之内处理最多的请求。

Sentinel 原理

Sentinel 的主要工作机制如下:

  • 对主流框架提供适配或者显示的 API,来定义需要保护的资源,并提供设施对资源进行实时统计和调用链路分析。
  • 根据预设的规则,结合对资源的实时统计信息,对流量进行控制。同时,Sentinel 提供开放的接口,方便您定义及改变规则。
  • Sentinel 提供实时的监控系统,方便您快速了解目前系统的状态。

Sentinel 使用

普通使用

  1. 如果应用使用 pom 工程,则在 pom.xml 文件中加入以下代码即可:
<dependency>
  <groupId>com.alibaba.csp</groupId>
  <artifactId>sentinel-core</artifactId>
  <version>1.8.1</version>
</dependency>
  1. 接下来,我们把需要控制流量的代码用 Sentinel API SphU.entry("HelloWorld")entry.exit() 包围起来即可。在下面的例子中,我们将 System.out.println("hello world"); 这端代码作为资源,用 API 包围起来(埋点)。参考代码如下:
while (true) {
  Entry entry = null;
  try {
    entry = SphU.entry("HelloWorld");
    /*您的业务逻辑 - 开始*/
    System.out.println("hello world");
    TimeUnit.MILLISECONDS.sleep(10);
    /*您的业务逻辑 - 结束*/
  } catch (BlockException e1) {
    /*流控逻辑处理 - 开始*/
    System.out.println("block!");
    /*流控逻辑处理 - 结束*/
  } catch (InterruptedException e) {
    e.printStackTrace();
  } finally {
    if (entry != null) {
      entry.exit();
    }
  }
}
  1. 接下来,通过规则来指定允许该资源通过的请求次数,例如下面的代码定义了资源 HelloWorld 每秒最多只能通过 20 个请求。
// 规则配置
private static void initFlowRules() {
  List<FlowRule> rules = new ArrayList<>();
  FlowRule rule = new FlowRule();
  rule.setResource("HelloWorld");
  rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
  // Set limit QPS to 20.
  rule.setCount(20);
  rules.add(rule);
  FlowRuleManager.loadRules(rules);
}
  1. Demo 运行之后,我们可以在日志 ~/logs/csp/${appName}-metrics.log.xxx 里看到下面的输出:
|--timestamp-|------date time----|-resource-|p |block|s |e|rt
1619954886000|2021-05-02 19:28:06|HelloWorld|20|1|20|0|12|0|0|0
1619954887000|2021-05-02 19:28:07|HelloWorld|20|3197|20|0|11|0|0|0
1619954888000|2021-05-02 19:28:08|HelloWorld|20|2857|20|0|11|0|0|0

其中 p 代表通过的请求, block 代表被阻止的请求, s 代表成功执行完成的请求个数, e 代表用户自定义的异常, rt 代表平均响应时长。

可以看到,这个程序每秒稳定输出 "hello world" 20 次,和规则中预先设定的阈值是一样的。

注解方式

  1. Sentinel 提供了 @SentinelResource 注解用于定义资源,并提供了 AspectJ 的扩展用于自动定义资源、处理 BlockException 等。使用 Sentinel Annotation AspectJ Extension 的时候需要引入以下依赖:
<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-annotation-aspectj</artifactId>
    <version>x.y.z</version>
</dependency>
  1. 示例
// 对应的 `handleException` 函数需要位于 `ExceptionUtil` 类中,并且必须为 public static 函数.
// 对应的返回值也需要和当前方法一样
@SentinelResource(value = "createOrder",
                  blockHandler = "blockHandler",
                  blockHandlerClass = {ExceptionUtils.class})
@GetMapping("/createOrder")
public OrderDto createOrder(OrderDto dto) {
  return new OrderDto();
}

// ExceptionUtils
public class ExceptionUtils {

  public static OrderDto blockHandler(OrderDto dto, BlockException ex) {
    ex.printStackTrace();
		return null;
  }
}

@SentinelResource 注解

注意:注解方式埋点不支持 private 方法。

@SentinelResource 用于定义资源,并提供可选的异常处理和 fallback 配置项。 @SentinelResource 注解包含以下属性:

  • value:资源名称,必需项(不能为空)

  • entryType:entry 类型,可选项(默认为 EntryType.OUT)

  • blockHandler / blockHandlerClass: blockHandler 对应处理 BlockException 的函数名称,可选项。blockHandler 函数访问范围需要是 public,返回类型需要与原方法相匹配,参数类型需要和原方法相匹配并且最后加一个额外的参数,类型为 BlockException。blockHandler 函数默认需要和原方法在同一个类中。若希望使用其他类的函数,则可以指定 blockHandlerClass 为对应的类的 Class 对象,注意对应的函数必需为 static 函数,否则无法解析。

  • fallback / fallbackClass:fallback 函数名称,可选项,用于在抛出异常的时候提供 fallback 处理逻辑。fallback 函数可以针对所有类型的异常(除了 exceptionsToIgnore 里面排除掉的异常类型)进行处理。fallback 函数签名和位置要求:

    • 返回值类型必须与原函数返回值类型一致;

    • 方法参数列表需要和原函数一致,或者可以额外多一个 Throwable 类型的参数用于接收对应的异常。

    • fallback 函数默认需要和原方法在同一个类中。若希望使用其他类的函数,则可以指定 fallbackClass 为对应的类的 Class 对象,注意对应的函数必需为 static 函数,否则无法解析。

  • defaultFallback(since 1.6.0):默认的 fallback 函数名称,可选项,通常用于通用的 fallback 逻辑(即可以用于很多服务或方法)。默认 fallback 函数可以针对所有类型的异常(除了 exceptionsToIgnore 里面排除掉的异常类型)进行处理。若同时配置了 fallback 和 defaultFallback,则只有 fallback 会生效。defaultFallback 函数签名要求:

    • 返回值类型必须与原函数返回值类型一致;

    • 方法参数列表需要为空,或者可以额外多一个 Throwable 类型的参数用于接收对应的异常。

    • defaultFallback 函数默认需要和原方法在同一个类中。若希望使用其他类的函数,则可以指定 fallbackClass 为对应的类的 Class 对象,注意对应的函数必需为 static 函数,否则无法解析。

  • exceptionsToIgnore(since 1.6.0):用于指定哪些异常被排除掉,不会计入异常统计中,也不会进入 fallback 逻辑中,而是会原样抛出。 1.8.0 版本开始,defaultFallback 支持在类级别进行配置。

注:1.6.0 之前的版本 fallback 函数只针对降级异常(DegradeException)进行处理,不能针对业务异常进行处理。

特别地,若 blockHandler 和 fallback 都进行了配置,则被限流降级而抛出 BlockException 时只会进入 blockHandler 处理逻辑。若未配置 blockHandler、fallback 和 defaultFallback,则被限流降级时会将 BlockException 直接抛出(若方法本身未定义 throws BlockException 则会被 JVM 包装一层 UndeclaredThrowableException)。

Sentinel 控制台

  1. 下载控制台程序地址:
https://github.com/alibaba/Sentinel/releases/tag/1.8.1
  1. 启动命令
java -Dserver.port=8089 -Dcsp.sentinel.dashboard.server=127.0.0.1:8089 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.8.1.jar
  1. 登录账号,默认的登录帐号和密码都是:sentinel
  2. 登录控制台后我们可以通过右侧菜单对我们的服务进行配置

sentinel 监控.png

参考

github.com/alibaba/Sen…