背景
一个Java的源代码文件变成计算机可执行的机器指令的过程中,需要经过两段编译,第一段是把.java文件转换成.class文件。第二段编译是把.class转换成机器指令的过程。
第一段编译就是javac命令。生成.class文件。
在第二编译阶段,JVM 通过解释字节码将其翻译成对应的机器指令,逐条读入,逐条解释翻译。经过解释执行,其执行速度必然会比可执行的二进制字节码程序慢很多。这就是传统的JVM的解释器(Interpreter)的功能。为了解决这种效率问题,引入了 JIT(即时编译) 技术。
引入了 JIT 技术后,Java程序还是通过解释器进行解释执行,当JVM发现某个方法或代码块运行特别频繁的时候,就会认为这是“热点代码”(Hot Spot Code)。然后JIT会把部分“热点代码”翻译成本地机器相关的机器码,并进行优化,然后再把翻译后的机器码缓存起来,以备下次使用。
JIT编译除了具有缓存的功能外,还会对代码做各种优化,比如:逃逸分析、 锁消除、 锁膨胀、 方法内联、 空值检查消除、 类型检测消除、 公共子表达式消除等。
逃逸分析
在《深入理解Java虚拟机中》关于Java堆内存有这样一段描述:
但是,随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。
这里只是简单提了一句,并没有深入分析,很多人看到这里由于对JIT、逃逸分析等技术不了解,所以也无法真正理解上面这段话的含义。
其实,在编译期间,JIT会对代码做很多优化。其中有一部分优化的目的就是减少内存堆分配压力,其中一种重要的技术叫做逃逸分析。
逃逸分析(Escape Analysis)是目前Java虚拟机中比较前沿的优化技术。这是一种可以有效减少Java程序中同步负载和内存堆分配压力的跨函数全局数据流分析算法,通过逃逸分析,Java hotspot编译器能够分析出一个新的对象的引用的使用范围从而决定是否要将这个对象分配到堆上。
逃逸分析的基本行为就是分析对象动态作用域:当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他地方中,称为方法逃逸。
例如:
public static StringBuffer craeteStringBuffer(String s1, String s2) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb;
}
StringBuffer sb是一个方法内部变量,上述代码中直接将sb返回,这样这个StringBuffer有可能被其他方法改变,它的作用域就不只是在方法内部了,虽然他是一个局部变量,但我们可以称之为逃逸到了方法外部。甚至还有可能被外部线程访问到,例如赋值给类变量或可以在其他线程中访问的实例变量,称为线程逃逸。
上述代码如果想要sb不逃出方法,可以这样写:
public static String createStringBuffer(String s1, String s2) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb.toString();
}
不直接返回 StringBuffer,那么StringBuffer将不会逃逸出方法。
使用逃逸分析,编译器可以对代码做如下优化:
一、同步省略。如果一个对象被发现只能从一个线程被访问到,那么对于这个对象的操作可以不考虑同步。
二、将堆分配转化为栈分配。如果一个对象在子程序中被分配,要使指向该对象的指针永远不会逃逸,对象可能是栈分配的候选,而不是堆分配。
三、分离对象或标量替换。有的对象可能不需要作为一个连续的内存结构存在也可以被访问到,那么对象的部分(或全部)可以不存储在内存,而是存储在CPU寄存器中。
对于第二点,可以进行深入研究:对象的栈上内存分配
我们知道,在一般情况下,对象和数组元素的内存分配是在堆内存上进行的。但是随着JIT编译器的日渐成熟,很多优化使这种分配策略并不绝对。JIT编译器就可以在编译期间根据逃逸分析的结果,来决定是否可以将对象的内存分配从堆转化为栈。
public static void main(String[] args) {
long a1 = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
alloc();
}
// 查看执行时间
long a2 = System.currentTimeMillis();
System.out.println("cost " + (a2 - a1) + " ms");
// 为了方便查看堆内存中对象个数,线程sleep
try {
Thread.sleep(100000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
}
private static void alloc() {
User user = new User();
}
static class User {
}
以上代码通过for循环,在代码中创建10万个User对象。在alloc方法中定义了User对象,但是并没有在方法外部引用他。即对象User并不会逃出alloc外部。经过JIT的逃逸分析后,就可以对齐进行内存分配优化。
我们指定以下JVM参数并运行:
-Xmx4G -Xms4G -XX:-DoEscapeAnalysis -XX:+PrintGCDetails -XX:+HeapDumpOnOutOfMemoryError
注:-Xms 为JVM启动时申请的初始Heap值,默认为操作系统物理内存的1/64但小于1G。-Xmx 为JVM运行时可申请的最大Heap值,默认值为物理内存的1/4但小于1G
在程序打印出cost XX ms后,代码运行结束之前,我们使用[jmap][1]命令,来查看下当前堆内存中有多少个User对象:
➜ ~ jps
2809 StackAllocTest
2810 Jps
➜ ~ jmap -histo 2809
num #instances #bytes class name
----------------------------------------------
1: 524 87282184 [I
2: 100000 1600000 StackAllocTest$User
3: 6806 2093136 [B
4: 8006 1320872 [C
5: 4188 100512 java.lang.String
6: 581 66304 java.lang.Class
从上面的jmap执行结果中我们可以看到,堆中共创建了10万个StackAllocTest$User实例。
在关闭逃避分析的情况下(-XX:-DoEscapeAnalysis),虽然在alloc方法中创建的User对象并没有逃逸到方法外部,但是还是被分配在堆内存中。也就说,如果没有JIT编译器优化,没有逃逸分析技术,正常情况下就应该是这样的。即所有对象都分配到堆内存中。
接下来,我们开启逃逸分析,再来执行下以上代码。
-Xmx4G -Xms4G -XX:+DoEscapeAnalysis -XX:+PrintGCDetails -XX:+HeapDumpOnOutOfMemoryError
在程序打印出cost XX ms后,代码运行结束之前,我们使用jmap命令,来查看下当前堆内存中有多少个User对象:
➜ ~ jps
709
2858 Launcher
2859 StackAllocTest
2860 Jps
➜ ~ jmap -histo 2859
num #instances #bytes class name
----------------------------------------------
1: 524 101944280 [I
2: 6806 2093136 [B
3: 8361 133790 StackAllocTest$User
4: 8006 1320872 [C
5: 4188 100512 java.lang.String
6: 581 66304 java.lang.Class
从以上打印结果中可以发现,开启了逃逸分析之后(-XX:+DoEscapeAnalysis),在堆内存中只有8千多个StackAllocTest$User对象。也就是说在经过JIT优化之后,堆内存中分配的对象数量,从10万降到了8千。
除了以上通过jmap验证对象个数的方法以外,读者还可以尝试将堆内存调小,然后执行以上代码,根据GC的次数来分析,也能发现,开启了逃逸分析之后,在运行期间,GC次数会明显减少。正是因为很多堆上分配被优化成了栈上分配,所以GC次数有了明显的减少。