Longest increasing subsequence|Go主题月

950 阅读2分钟

【Golang主题学习月】周末肝了几道动态规划题,发了一个超细腻的教学版,反响很不错哦,接下来我会使用两种语言进行编码刷题,分别是GO和JAVA,各位菁英们,坚持刷题吧。

如果你对动态规划不熟悉,望转到该篇 \color{red}{如果你对动态规划不熟悉,望转到该篇~}

肝了好多天-动态规划十连-超细腻解析|刷题打卡

这是一道比较简单的题目😄😄😄 \color{green}{这是一道比较简单的题目😄 😄 😄 ~}

什么题可以选择动态规划来做?

1.计数

  • 有多少种方式走到右下角
  • 有多少种方法选出k个数是的和是sum

2.求最大值最小值

  • 从左上角走到右下角路径的最大数字和
  • 最长上升子序列长度

3.求存在性

  • 取石子游戏,先手是否必胜
  • 能不能选出k个数使得和是sum

4.综合运用

  • 动态规划 + hash
  • 动态规划 + 递归
  • ...

leecode 300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

  示例 1:

输入:nums = [10,9,2,5,3,7,101,18]

输出:4

解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]

输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]

输出:1  

提示:

1 <= nums.length <= 2500

-104 <= nums[i] <= 104  

进阶:

你可以设计时间复杂度为 O(n2) 的解决方案吗?

你能将算法的时间复杂度降低到 O(n log(n)) 吗?

参考代码

GO语言版

func lengthOfLIS(nums []int) int {
	if len(nums) < 1 {
		return 0
	}
	dp := make([]int, len(nums))
	result := 1
	for i := 0; i < len(nums); i++ {
		dp[i] = 1
		for j := 0; j < i; j++ {
			if nums[j] < nums[i] {
				dp[i] = max(dp[j]+1, dp[i])
			}
		}
		result = max(result, dp[i])
	}
	return result
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}




NICE太简单啦😄😄😄 \color{red}{NICE太简单啦😄 😄 😄 ~}

java版

  class Solution {
    public int lengthOfLIS(int[] nums) {
        if (nums.length == 0) {
            return 0;
        }
        int[] dp = new int[nums.length];
        dp[0] = 1;
        int maxans = 1;
        for (int i = 1; i < nums.length; i++) {
            dp[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            maxans = Math.max(maxans, dp[i]);
        }
        return maxans;
    }
}


❤️❤️❤️❤️

非常感谢人才们能看到这里,如果这个文章写得还不错,觉得有点东西的话 求点赞👍 求关注❤️ 求分享👥 对帅气欧巴的我来说真的 非常有用!!!

如果本篇博客有任何错误,请批评指教,不胜感激 !

文末福利,最近整理一份面试资料《Java面试通关手册》,覆盖了Java核心技术、JVM、Java并发、SSM、微服务、数据库、数据结构等等。获取方式:GitHub github.com/Tingyu-Note…,更多内容关注公号:汀雨笔记,陆续奉上。