Python中单线程、多线程与多进程的效率对比实验

443 阅读4分钟

Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。

对比实验

资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率

操作系统CPU内存硬盘
Windows 10双核8GB机械硬盘

(1)引入所需要的模块
```python

import requests import time from threading import Thread from multiprocessing import Process python def count(x, y): # 使程序完成50万计算 c = 0 while c < 500000: c += 1 x += x y += y


###### (2)定义CPU密集的计算函数

###### [](http://blog.atomicer.cn/2016/09/30/Python%E4%B8%AD%E5%A4%9A%E7%BA%BF%E7%A8%8B%E5%92%8C%E5%A4%9A%E8%BF%9B%E7%A8%8B%E7%9A%84%E5%AF%B9%E6%AF%94/#(3)定义IO密集的文件读写函数 "(3)定义IO密集的文件读写函数")(3)定义IO密集的文件读写函数

###### [](http://blog.atomicer.cn/2016/09/30/Python%E4%B8%AD%E5%A4%9A%E7%BA%BF%E7%A8%8B%E5%92%8C%E5%A4%9A%E8%BF%9B%E7%A8%8B%E7%9A%84%E5%AF%B9%E6%AF%94/#4-定义网络请求函数 "(4) 定义网络请求函数")```python
def write():     f = open("test.txt", "w")     for x in range(5000000):         f.write("testwrite\n")     f.close() def read():     f = open("test.txt", "r")     lines = f.readlines()     f.close() 
```   ```python
_head = {             'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'} url = "http://www.tieba.com" def http_request():     try:         webPage = requests.get(url, headers=_head)         html = webPage.text         return {"context": html}     except Exception as e:         return {"error": e}
(4) 定义网络请求函数
(5)测试线性执行IO密集操作、CPU密集操作所需时间、网络请求密集型操作所需时间


\

# CPU密集操作
t = time.time()
for x in range(10):
    count(1, 1)
print("Line cpu", time.time() - t)
# IO密集操作
t = time.time()
for x in range(10):
    write()
    read()
print("Line IO", time.time() - t)
# 网络请求密集型操作
t = time.time()
for x in range(10):
    http_request()
print("Line Http Request", time.time() - t)


\

(6)测试多线程并发执行CPU密集操作所需时间输出

  • CPU密集:95.6059999466、91.57099986076355 92.52800011634827、 99.96799993515015
  • IO密集:24.25、21.76699995994568、21.769999980926514、22.060999870300293
  • 网络请求密集型: 4.519999980926514、8.563999891281128、4.371000051498413、4.522000074386597、14.671000003814697

\

counts = []
t = time.time()
for x in range(10):
    thread = Thread(target=count, args=(1,1))
    counts.append(thread)
    thread.start()
e = counts.__len__()
while True:
    for th in counts:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print(time.time() - t)


Output: 99.9240000248 、101.26400017738342、102.32200002670288\

(7)测试多线程并发执行IO密集操作所需时间

def io():
    write()
    read()
t = time.time()
ios = []
t = time.time()
for x in range(10):
    thread = Thread(target=count, args=(1,1))
    ios.append(thread)
    thread.start()
e = ios.__len__()
while True:
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print(time.time() - t)



\

Output: 25.69700002670288、24.02400016784668

(8)测试多线程并发执行网络密集操作所需时间
t = time.time()
ios = []
t = time.time()
for x in range(10):
    thread = Thread(target=http_request)
    ios.append(thread)
    thread.start()
e = ios.__len__()
while True:
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Thread Http Request", time.time() - t)



\

Output: 0.7419998645782471、0.3839998245239258、0.3900001049041748

(9)测试多进程并发执行CPU密集操作所需时间
counts = []
t = time.time()
for x in range(10):
    process = Process(target=count, args=(1,1))
    counts.append(process)
    process.start()
e = counts.__len__()
while True:
    for th in counts:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Multiprocess cpu", time.time() - t)



\

Output: 54.342000007629395、53.437999963760376

(10)测试多进程并发执行IO密集型操作
t = time.time()
ios = []
t = time.time()
for x in range(10):
    process = Process(target=io)
    ios.append(process)
    process.start()
e = ios.__len__()
while True:
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Multiprocess IO", time.time() - t)

\

\

\

Output: 12.509000062942505、13.059000015258789

(11)测试多进程并发执行Http请求密集型操作
```python

t = time.time() httprs = [] t = time.time() for x in range(10): process = Process(target=http_request) ios.append(process) process.start() e = httprs.len() while True: for th in httprs: if not th.is_alive(): e -= 1 if e <= 0: break print("Multiprocess Http Request", time.time() - t)


######

> Output: 0.53299999237060550.4760000705718994

***

##### [](http://blog.atomicer.cn/2016/09/30/Python%E4%B8%AD%E5%A4%9A%E7%BA%BF%E7%A8%8B%E5%92%8C%E5%A4%9A%E8%BF%9B%E7%A8%8B%E7%9A%84%E5%AF%B9%E6%AF%94/#实验结果 "实验结果")实验结果

|       | CPU密集型操作       | IO密集型操作        | 网络请求密集型操作    |
| ----- | -------------- | -------------- | ------------ |
| 线性操作  | 94.91824996469 | 22.46199995279 | 7.3296000004 |
| 多线程操作 | 101.1700000762 | 24.8605000973  | 0.5053332647 |
| 多进程操作 | 53.8899999857  | 12.7840000391  | 0.5045000315 |

通过上面的结果,我们可以看到:\
\>

* 多线程在IO密集型的操作下似乎也没有很大的优势(也许IO操作的任务再繁重一些就能体现出优势),在CPU密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势便非常显著了
* 多进程无论是在CPU密集型还是IO密集型以及网络请求密集型(经常发生线程阻塞的操作)中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用CPU等资源,所以对于这种情况下,我们可以选择多线程来执行\
  [![多线程的效果](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/21f95e04eac74fa186d32c62c38d3f82~tplv-k3u1fbpfcp-zoom-1.image)](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/21f95e04eac74fa186d32c62c38d3f82~tplv-k3u1fbpfcp-zoom-1.image)

[原文链接在这里](http://blog.atomicer.cn/2016/09/30/Python%E4%B8%AD%E5%A4%9A%E7%BA%BF%E7%A8%8B%E5%92%8C%E5%A4%9A%E8%BF%9B%E7%A8%8B%E7%9A%84%E5%AF%B9%E6%AF%94/)\