23种设计模式-单例模式(1)

590 阅读11分钟

本章源码地址:

github.com/Technicolor…

 

定义:

        单例模式,是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例的特殊类。通过单例模式可以保证系统中一个类只有一个实例。即一个类只有一个对象实例。

 

特点

       1、单例类只能有一个实例。
2、单例类必须自己自己创建自己的唯一实例。
3、单例类必须给所有其他对象提供这一实例

 

单例模式的要点:

    1,私有的构造方法

    2,指向自己实例的私有静态引用

    3,以自己实例为返回值的静态的公有的方法

 

单例模式根据实例化对象时机的不同分为两种:

        一种是饿汉式单例,一种是懒汉式单例。

        饿汉式单例在单例类被加载时候,就实例化一个对象交给自己的引用;而懒汉式在调用取得实例方法的时候才会实例化对象。

代码如下:

 

饿汉式单例(在类加载时就完成了初始化,所以类加载较慢,但获取对象的速度快)

 

public class Singleton {

    private static Singleton singleton = new Singleton();

    private Singleton(){}

    public static Singleton getInstance() {静态,不用同步(类加载时已初始化,不会有多线程的问题)
        return singleton;
    }
}

1)私有构造函数

2)静态私有成员--在类加载时已初始化

3)公开访问点getInstance-----不需要同步,因为在类加载时已经初始化完毕,也不需要判断null,直接返回

 

饿汉式在类创建的同时就已经创建好一个静态的对象供系统使用,以后不再改变,所以天生是线程安全的。

 

懒汉式单例(类加载时不初始化)

 

public class Singleton {  
    private static Singleton singleton;  
    private Singleton(){}  

    public static synchronized Singleton getInstance(){  //静态,同步,公开访问点
        if(singleton==null){  
            singleton = new Singleton();  
        }  
        return singleton;  
    }  
}  

1)构造函数定义为私有----不能在别的类中来获取该类的对象,只能在类自身中得到自己的对象

2)成员变量为static的,没有初始化----类加载快,但访问类的唯一实例慢,static保证在自身类中获取自身对象

3)公开访问点getInstance: public和synchronized的-----public保证对外公开,同步保证多线程时的正确性(因为类变量不是在加载时初始化的)

Singleton通过将构造方法限定为private 避免了类在外部被实例化,在同一个虚拟机范围内,Singleton 的唯一实例只能通过getInstance()方法访问。(事实上,通过Java反射机制是能够实例化构造方法为private的类的,那基本上会使所有的Java单例实现失效。此问题在此处不做讨论,姑且掩耳盗铃地认为反射机制不存在。)

但是以上懒汉式单例的实现没有考虑线程安全问题,它是线程不安全的,并发环境下很可能出现多个Singleton实例,要实现线程安全,有以下三种方式,都是对getInstance这个方法改造,保证了懒汉式单例的线程安全:

 

【1】、在getInstance方法上加同步:

public static synchronized Singleton getInstance() {

if (single == null) {

single = new Singleton();

}

return single;

}

在方法调用上加了同步,虽然线程安全了,但是每次都要同步,会影响性能,毕竟99%的情况下是不需要同步的。

【2】****单例模式还有一种比较常见的形式:双重锁的形式

 

public class Singleton{    
    private static volatile Singleton instance=null;    
    private Singleton(){        
    //do something
    }    
    public static  Singleton getInstance(){        
        if(instance==null){            
            synchronized(SingletonClass.class){                
                if(instance==null){
                    instance=new Singleton();
                }
            }
        }        
    return instance;
     }
}

 

(1)为什么在getInstance()方法内使用两个if (singleton == null) 进行判断呢?

答:试想高并发下,两个线程AB都通过了第一个if。若A先抢到锁,new了一个对象,释放锁,然后B再抢到锁,此时如果不做第二个if判断,B线程将会再new一个对象。同时确保了只有第一次调用单例的时候才会做同步,这样也是线程安全的,同时避免了每次都同步的性能损耗。

(2)volatile 关键字的作用?

答:假设没有关键字volatile的情况下,两个线程A、B,都是第一次调用该单例方法,线程A先执行singleton = new Singleton(),该构造方法是一个非原子操作,编译后生成多条字节码指令,由于JAVA的指令重排序,可能会先执行singleton 的赋值操作,该操作实际只是在内存中开辟一片存储对象的区域后直接返回内存的引用,之后singleton 便不为空了,但是实际的初始化操作却还没有执行,如果就在此时线程B进入,就会看到一个不为空的但是不完整(没有完成初始化)的singleton 对象,所以需要加入volatile关键字,禁止指令重排序优化,从而安全的实现单例。

 

    这个模式将同步内容下方到if内部,提高了执行的效率,不必每次获取对象时都进行同步,只有第一次才同步,创建了以后就没必要了。

        这种模式中双重判断加同步的方式,比第一个例子中的效率大大提升,因为如果单层if判断,在服务器允许的情况下,假设有一百个线程,耗费的时间为100*(同步判断时间+if判断时间),而如果双重if判断,100的线程可以同时if判断,理论消耗的时间只有一个if判断的时间。

        所以如果面对高并发的情况,而且采用的是懒汉模式,最好的选择就是双重判断加同步的方式。

 

静态内部类

public class Singleton {  
    private static class LazyHolder {  
       private static final Singleton INSTANCE = new Singleton();  
    }  
    private Singleton (){}  
    public static final Singleton getInstance() {  
       return LazyHolder.INSTANCE;  
    }  
}  

利用了classloader的机制来保证初始化instance时只有一个线程,所以也是线程安全的,同时没有性能损耗,这种比上面【1】、【2】都好一些,既实现了线程安全,又避免了同步带来的性能影响。

 

登记式单例:

//类似Spring里面的方法,将类名注册,下次从里面直接获取。
public class Singleton3 {
    private static Map<String,Singleton3> map = new HashMap<String,Singleton3>();
    static{
        Singleton3 single = new Singleton3();
        map.put(single.getClass().getName(), single);
    }
    //保护的默认构造子
    protected Singleton3(){}
    //静态工厂方法,返还此类惟一的实例
    public static Singleton3 getInstance(String name) {
        if(name == null) {
            name = Singleton3.class.getName();
            System.out.println("name == null"+"--->name="+name);
        }
        if(map.get(name) == null) {
            try {
                map.put(name, (Singleton3) Class.forName(name).newInstance());
            } catch (InstantiationException e) {
                e.printStackTrace();
            } catch (IllegalAccessException e) {
                e.printStackTrace();
            } catch (ClassNotFoundException e) {
                e.printStackTrace();
            }
        }
        return map.get(name);
    }
    //一个示意性的商业方法
    public String about() {    
        return "Hello, I am RegSingleton.";    
    }    
    public static void main(String[] args) {
        Singleton3 single3 = Singleton3.getInstance(null);
        System.out.println(single3.about());
    }
}

登记式单例实际上维护了一组单例类的实例,将这些实例存放在一个Map(登记薄)中,对于已经登记过的实例,则从Map直接返回,对于没有登记的,则先登记,然后返回。

饿汉式和懒汉式区别:

1、初始化方面:

(1)饿汉式就是类一旦加载,就把单例初始化完成,保证getInstance的时候,单例是已经存在的了。

(2)而懒汉比较懒,只有当调用getInstance的时候,才会去初始化这个单例。

2、线程安全方面:

(1)饿汉式天生就是线程安全的,可以直接用于多线程而不会出现问题。懒汉式本身是非线程安全的。

3、性能方方面:

(1)饿汉式在类创建的同时就实例化一个静态对象出来,不管之后会不会使用这个单例,都会占据一定的内存,但是相应的,在第一次调用时速度也会更快,因为其资源已经初始化完成。

(2)懒汉式顾名思义,会延迟加载,在第一次使用该单例的时候才会实例化对象出来,第一次调用时要做初始化,如果要做的工作比较多,性能上会有些延迟,之后就和饿汉式一样了。

什么是线程安全?

如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

或者说:一个类或者程序所提供的接口对于线程来说是原子操作,或者多个线程之间的切换不会导致该接口的执行结果存在二义性,也就是说我们不用考虑同步的问题,那就是线程安全的。

测试:

以下是一个单例类使用的例子,以懒汉式为例,这里为了保证线程安全,使用了双重检查锁定的方式:

public class TestSingleton {
	String name = null;
 
        private TestSingleton() {
	}
 
	private static volatile TestSingleton instance = null;
 
	public static TestSingleton getInstance() {
           if (instance == null) {  
             synchronized (TestSingleton.class) {  
                if (instance == null) {  
                   instance = new TestSingleton(); 
                }  
             }  
           } 
           return instance;
	}
 
	public String getName() {
		return name;
	}
 
	public void setName(String name) {
		this.name = name;
	}
 
	public void printInfo() {
		System.out.println("the name is " + name);
	}
 
}
public class TMain {
	public static void main(String[] args){
		TestSingletonts1 = TestSingleton.getInstance();
		ts1.setName("jason");
		TestSingletonts2 = TestSingleton.getInstance();
		ts2.setName("0539");
		
		ts1.printInfo();
		ts2.printInfo();
		
		if(ts1 == ts2){
			System.out.println("创建的是同一个实例");
		}else{
			System.out.println("创建的不是同一个实例");
		}
	}
}

运行结果:

the name is 0539
the name is0539
创建的是同一个实例

结论:由结果可以得知单例模式为一个面向对象的应用程序提供了对象惟一的访问点,不管它实现何种功能,整个应用程序都会同享一个实例对象。

小结:

单例模式的优点:

    1,在内存中只有一个对象,节省内存空间。

    2,避免频繁的创建销毁对象,可以提高性能。

    3,避免对共享资源的多重占用。

    4,可以全局访问。

 

单例模式的缺点:

    1,扩展困难,由于getInstance静态函数没有办法生成子类的实例。如果要拓展,只有重写那个类。

    2,隐式使用引起类结构不清晰。

    3,导致程序内存泄露的问题。

 

适用场景:

        由于单例模式的以上优点,所以是编程中用的比较多的一种设计模式。以下为使用单例模式的场景:

        1,需要频繁实例化然后销毁的对象。

        2,创建对象时耗时过多或者耗资源过多,但又经常用到的对象。

        3,资源共享的情况下,避免由于资源操作时导致的性能或损耗等

        4,控制资源的情况下,方便资源之间的互相通信。

 

单例模式注意事项:

        只能使用单例类提供的方法得到单例对象,不要使用反射,否则将会实例化一个新对象。

        不要做断开单例类对象与类中静态引用的危险操作。

        多线程使用单例使用共享资源时,注意线程安全问题。

 

关于Java中单例模式的一些常见问题:

 

单例模式的对象长时间不用会被jvm垃圾收集器收集吗

        除非人为地断开单例中静态引用到单例对象的联接,否则jvm垃圾收集器是不会回收单例对象的。

jvm卸载类的判定条件如下:

        1,该类所有的实例都已经被回收,也就是java堆中不存在该类的任何实例。

        2,加载该类的ClassLoader已经被回收。

        3,该类对应的java.lang.Class对象没有任何地方被引用,无法在任何地方通过反射访问该类的方法。

        只有三个条件都满足,jvm才会在垃圾收集的时候卸载类。显然,单例的类不满足条件一,因此单例类也不会被回收。

 

在一个jvm中会出现多个单例吗

        在分布式系统、多个类加载器、以及序列化的的情况下,会产生多个单例,这一点是无庸置疑的。那么在同一个jvm中,会不会产生单例呢?使用单例提供的getInstance()方法只能得到同一个单例,除非是使用反射方式,将会得到新的单例。

代码如下:

 

Class c = Class.forName(Singleton.class.getName());  
Constructor ct = c.getDeclaredConstructor();  
ct.setAccessible(true);  
Singleton singleton = (Singleton)ct.newInstance();

 

这样,每次运行都会产生新的单例对象。所以运用单例模式时,一定注意不要使用反射产生新的单例对象。

 

在getInstance()方法上同步有优势还是仅同步必要的块更优优势?

        因为锁定仅仅在创建实例时才有意义,然后其他时候实例仅仅是只读访问的,因此只同步必要的块的性能更优,并且是更好的选择。

        缺点:只有在第一次调用的时候,才会出现生成2个对象,才必须要求同步。而一旦singleton 不为null,系统依旧花费同步锁开销,有点得不偿失。

 

单例类可以被继承吗

        根据单例实例构造的时机和方式不同,单例模式还可以分成几种。但对于这种通过私有化构造函数,静态方法提供实例的单例类而言,是不支持继承的。

        这种模式的单例实现要求每个具体的单例类自身来维护单例实例和限制多个实例的生成。但可以采用另外一种实现单例的思路:登记式单例,来使得单例对继承开放。

 

原博客链接:

blog.csdn.net/jason0539/a…

blog.csdn.net/a745233700/…