HashMap源码阅读(1.8)

330 阅读3分钟

总览

变量

image.png

  • serialVersionUID:序列化
  • DEFAULT_INITIAL_CAPACITY:默认容量16
  • MAXIMUM_CAPACITY:最大容量2^30(integer最大值2^31-1,最小值-2^31)
  • DEFAULT_LOAD_FACTOR:默认负载因子0.75
  • TREEIFY_THRESHOLD:8(链表转红黑树阈值)
  • UNTREEIFY_THRESHOLD:6(红黑树转链表阈值)
  • MIN_TREEIFY_CAPACITY:64(最低开启红黑树容量阈值)
  • table:存放数据
  • entrySet:Holds cached entrySet()
  • size:map当前大小
  • modCount:修改次数
  • threshold:The next size value at which to resize (capacity * load factor)
  • loadFactor:负载因子

内部类

image.png

  • 迭代器 HashIterator KeyIterator ValueIterator EntryIterator
  • 并行迭代器 HashMapSpliterator KeySpliterator ValueSpliterator EntrySpliterator

方法

image.png

image.png

image.png

初始化

  • HashMap(Map<? extends K, ? extends V> m)
  • HashMap()
  • HashMap(int initialCapacity)
  • HashMap(int initialCapacity, float loadFactor)
    //找到最小2^x > cap
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;  //保证前1位是1
        n |= n >>> 2;  //保证前2位是1
        n |= n >>> 4;  //保证前4位是1
        n |= n >>> 8;  //保证前8位是1
        n |= n >>> 16; //保证前16位是1
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

插入

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

hash函数

    static final int hash(Object key) {
        int h;
        //高16位和低16位异或(传说可以均匀hash,自己测试下来和不异或没啥区别)
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

其实是通过putVal方法

/**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value(这里可以注意下put 和 putIfAbsent的区别)
     * @param evict if false, 创建模式.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            //table为null 或 table没有数据 初始化table
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            //i = (n - 1) & hash 计算坑位  注意这里使用的是与运算,而不是求余(为啥容量要为2^x)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //key 存在
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //注意是从0开始数的,所以是8的时候转换为树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        //key 存在
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    //onlyifavsent = true 不改变原始值
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            //是否需要扩容
            resize();
        afterNodeInsertion(evict);
        return null;
    }

重点函数resize()

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                //已经是最大容量了,无法再扩容
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //小于最大容量 && 大于16
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                     //阈值*2
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            //初始化没有容量,将阈值设为容量 ??
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            //初始化 设置容量 和 阈值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            //给新阈值 设值
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //新阈值赋值给 阈值变量
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    //清理引用,避免内存泄漏
                    oldTab[j] = null;
                    if (e.next == null)
                        //不是链表直接迁移
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        //是树节点
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //当前位置,还是新位置  j + oldCap
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //010000   16
                            //100000   32
                            //16容量都在3,32容量 19=3+163
                            //hash 10011   
                            //hash 00011
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

红黑树的拆分

//和链表一样将节点分到当前位置j 或 j + oldCap
//多了树变链表判断 阈值为6, 或建树
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }