TryLock
当一个 goroutine 调用这个 TryLock 方法请求锁的时候,如果这把锁没有被其他 goroutine 所持有,那么,这个 goroutine 就持有了这把锁,并返回 true;如果这把锁已经被其他 goroutine 所持有,或者是正在准备交给某个被唤醒的 goroutine,那么,这个请求锁的 goroutine 就直接返回 false,不会阻塞在方法调用上。
// 复制Mutex定义的常量
const (
mutexLocked = 1 << iota // 加锁标识位置
mutexWoken // 唤醒标识位置
mutexStarving // 锁饥饿标识位置
mutexWaiterShift = iota // 标识waiter的起始bit位置
)
// 扩展一个Mutex结构
type Mutex struct {
sync.Mutex
}
// 尝试获取锁
func (m *Mutex) TryLock() bool {
// 如果能成功抢到锁
if atomic.CompareAndSwapInt32((*int32)(unsafe.Pointer(&m.Mutex)), 0, mutexLocked) {
return true
}
// 如果处于唤醒、加锁或者饥饿状态,这次请求就不参与竞争了,返回false
old := atomic.LoadInt32((*int32)(unsafe.Pointer(&m.Mutex)))
if old&(mutexLocked|mutexStarving|mutexWoken) != 0 {
return false
}
// 尝试在竞争的状态下请求锁
new := old | mutexLocked
return atomic.CompareAndSwapInt32((*int32)(unsafe.Pointer(&m.Mutex)), old, new)
}
test case
func try() {
var mu Mutex
go func() { // 启动一个goroutine持有一段时间的锁
mu.Lock()
time.Sleep(time.Duration(rand.Intn(2)) * time.Second)
mu.Unlock()
}()
time.Sleep(time.Second)
ok := mu.TryLock() // 尝试获取到锁
if ok { // 获取成功
fmt.Println("got the lock")
// do something
mu.Unlock()
return
}
// 没有获取到
fmt.Println("can't get the lock")
}
获取等待者的数量等指标
Mutex结构
type Mutex struct {
state int32
sema uint32
}
Mutex 结构中的 state 字段有很多个含义,通过 state 字段,你可以知道锁是否已经被某个 goroutine 持有、当前是否处于饥饿状态、是否有等待的 goroutine 被唤醒、等待者的数量等信息。但是,state 这个字段并没有暴露出来,所以,我们需要想办法获取到这个字段,并进行解析。
可以通过 unsafe 的方式实现
const (
mutexLocked = 1 << iota // mutex is locked
mutexWoken
mutexStarving
mutexWaiterShift = iota
)
type Mutex struct {
sync.Mutex
}
func (m *Mutex) Count() int {
// 获取state字段的值
v := atomic.LoadInt32((*int32)(unsafe.Pointer(&m.Mutex)))
v = v >> mutexWaiterShift //得到等待者的数值
v = v + (v & mutexLocked) //再加上锁持有者的数量,0或者1
return int(v)
}
// 锁是否被持有
func (m *Mutex) IsLocked() bool {
state := atomic.LoadInt32((*int32)(unsafe.Pointer(&m.Mutex)))
return state&mutexLocked == mutexLocked
}
// 是否有等待者被唤醒
func (m *Mutex) IsWoken() bool {
state := atomic.LoadInt32((*int32)(unsafe.Pointer(&m.Mutex)))
return state&mutexWoken == mutexWoken
}
// 锁是否处于饥饿状态
func (m *Mutex) IsStarving() bool {
state := atomic.LoadInt32((*int32)(unsafe.Pointer(&m.Mutex)))
return state&mutexStarving == mutexStarving
}
需要注意在获取 state 字段的时候,并没有通过 Lock 获取这把锁,所以获取的这个 state 的值是一个瞬态的值,可能在你解析出这个字段之后,锁的状态已经发生了变化。
使用 Mutex 实现一个线程安全的队列
可以通过 Slice 来实现队列,但是通过 Slice 实现的队列不是线程安全的,出队(Dequeue)和入队(Enqueue)会有 data race 的问题。这个时候,Mutex 就要隆重出场了,通过它,我们可以在出队和入队的时候加上锁的保护。
type SliceQueue struct {
data []interface{}
mu sync.Mutex
}
func NewSliceQueue(n int) (q *SliceQueue) {
return &SliceQueue{data: make([]interface{}, 0, n)}
}
// Enqueue 把值放在队尾
func (q *SliceQueue) Enqueue(v interface{}) {
q.mu.Lock()
q.data = append(q.data, v)
q.mu.Unlock()
}
// Dequeue 移去队头并返回
func (q *SliceQueue) Dequeue() interface{} {
q.mu.Lock()
if len(q.data) == 0 {
q.mu.Unlock()
return nil
}
v := q.data[0]
q.data = q.data[1:]
q.mu.Unlock()
return v
}