给你二叉搜索树的根节点 root ,该树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。
进阶:使用 O(n) 空间复杂度的解法很容易实现。你能想出一个只使用常数空间的解决方案吗?
来源:力扣(LeetCode) 链接:leetcode-cn.com/problems/re… 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 方法一:显式中序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void inorder(TreeNode* root, vector<int>& nums) {
if (root == nullptr) return;
inorder(root->left, nums);
nums.push_back(root->val);
inorder(root->right, nums);
}
pair<int, int> findTwoSwapped(vector<int>& nums) {
int x = -1, y = -1;
for (int i = 0; i < nums.size() - 1; ++i)
{
if (nums[i + 1] < nums[i]) {
y = nums[i + 1];
if (x == -1) {
x = nums[i];
} else {
break;
}
}
}
// x为需交换的大值,y为需要交换的小值
return {x, y};
}
void recover(TreeNode* r, int count, int x, int y) {
if (r == nullptr) {
return;
}
// 更新对应位置的值
if (r->val == x || r->val == y) {
r->val = r->val == x ? y : x;
if (--count == 0) {
return;
}
}
// 深度优先遍历
recover(r->left, count, x, y);
recover(r->right, count, x, y);
}
void recoverTree(TreeNode* root) {
vector<int> nums;
// 中序遍历存储增序数组
inorder(root, nums);
pair<int, int> swapped = findTwoSwapped(nums);
recover(root, 2, swapped.first, swapped.second);
}
};
方法二:隐式中序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void recoverTree(TreeNode* root) {
stack<TreeNode*> stack;
TreeNode* pred = nullptr;
TreeNode* x = nullptr;
TreeNode* y = nullptr;
// 根 左节点和左子孙节点存入栈
// 对每一个节点比较对应的父右节点
while(root != nullptr || !stack.empty()) {
while(root != nullptr) {
stack.push(root);
root = root->left;
}
root = stack.top();
stack.pop();
// x代表错序大值,y代表后面小值
if (pred != nullptr && root->val < pred->val) {
y = root;
if (x == nullptr) {
x = pred;
} else {
break;
}
}
pred = root;
root = root->right;
}
swap(x->val, y->val);
}
};
方法三:Morris 中序遍历
morris遍历的实现原则:
- 记作当前节点为cur。
- 如果cur无左孩子,cur向右移动(cur=cur.right)
- 如果cur有左孩子,找到cur左子树上最右的节点,记为mostright
- 如果mostright的right指针指向空,让其指向cur,cur向左移动(cur=cur.left)
- 如果mostright的right指针指向cur,让其指向空,cur向右移动(cur=cur.right)
class Solution {
public:
void recoverTree(TreeNode* root) {
TreeNode *x = nullptr, *y = nullptr, *pred = nullptr, *predecessor = nullptr;
while (root != nullptr) {
if (root->left != nullptr) {
// predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
predecessor = root->left;
while (predecessor->right != nullptr && predecessor->right != root) {
predecessor = predecessor->right;
}
// 让 predecessor 的右指针指向 root,继续遍历左子树
if (predecessor->right == nullptr) {
predecessor->right = root;
root = root->left;
}
// 说明左子树已经访问完了,我们需要断开链接
else {
if (pred != nullptr && root->val < pred->val) {
y = root;
if (x == nullptr) {
x = pred;
}
}
pred = root;
predecessor->right = nullptr;
root = root->right;
}
}
// 如果没有左孩子,则直接访问右孩子
else {
if (pred != nullptr && root->val < pred->val) {
y = root;
if (x == nullptr) {
x = pred;
}
}
pred = root;
root = root->right;
}
}
swap(x->val, y->val);
}
};
二次理解Morris
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void recoverTree(TreeNode* root) {
TreeNode *x = nullptr, *y = nullptr, *pred = nullptr, *prev = nullptr;
while(root != nullptr) {
if (root->left != nullptr) {
// 开始左子树
prev = root->left;
// 遍历左子树的右子节点,找到最右
while(prev->right != nullptr && prev->right != root) {
prev = prev->right;
}
// 最右不是空,断开,左子树访问完;最右是空 继续访问左子树
if (prev->right != nullptr) {
if (pred != nullptr && pred->val > root->val) {
y = root;
if (x == nullptr) {
x = pred;
}
}
// 左子树访问完 断开链接
prev->right = nullptr;
// 更新pred和root
pred = root;
root = root->right;
} else {
// 左子树未访问完,继续,加上链接指向root
prev->right = root;
root = root->left;
}
} else {
if (pred != nullptr && pred->val > root->val) {
y = root;
if (x == nullptr) {
x = pred;
}
}
pred = root;
root = root->right;
}
}
swap(x->val, y->val);
}
};