1. hdfs写流程
2. hdfs读流程
3. 机架感知
4. NN和2NN工作机制
2NN的引入以及NN架构的思考
- NameNode元数据存储位置:存储在内存
- 为避免数据丢失,提高可靠性,还需要存放在磁盘中,因此产生在磁盘中备份元数据的FsImage。
- 当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。
- 如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并
NameNode工作机制
-
第一阶段:NameNode启动
(1)第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
(2)客户端对元数据进行增删改的请求。
(3)NameNode记录操作日志,更新滚动日志。
(4)NameNode在内存中对元数据进行增删改。
-
第二阶段:Secondary NameNode工作
(1)Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。
(2)Secondary NameNode请求执行CheckPoint。
(3)NameNode滚动正在写的Edits日志。
(4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
(5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
(6)生成新的镜像文件fsimage.chkpoint。
(7)拷贝fsimage.chkpoint到NameNode。
(8)NameNode将fsimage.chkpoint重新命名成fsimage。
5. Fsimage和Edits解析
6. CheckPoint时间设置
-
通常情况SecondaryNameNode每隔一小时执行一次
<!-- hdfs-default.xml --> <property> <name>dfs.namenode.checkpoint.period</name> <value>3600</value> </property> -
一分钟检查一次操作次数,3当操作次数达到1百万时,SecondaryNameNode执行一次。
<property> <name>dfs.namenode.checkpoint.txns</name> <value>1000000</value> <description>操作动作次数</description> </property> <property> <name>dfs.namenode.checkpoint.check.period</name> <value>60</value> <description> 1分钟检查一次操作次数</description> </property >
7. NameNode故障处理
NameNode故障后,可采用如下2种方式恢复
-
将SecondaryNameNode中数据拷贝到NameNode存储数据的目录;
(1)kill -9 NameNode进程
(2)删除NameNode存储的数据(/opt/module/hadoop-3.1.3/data/tmp/dfs/name)
[atguigu@hadoop102 hadoop-3.1.3]$ rm -rf /opt/module/hadoop-3.1.3/data/tmp/dfs/name/*(3)拷贝SecondaryNameNode中数据到原NameNode存储数据目录
[atguigu@hadoop102 dfs]$ scp -r atguigu@hadoop104:/opt/module/hadoop-3.1.3/data/tmp/dfs/namesecondary/* ./name/(4)重新启动NameNode
[atguigu@hadoop102 hadoop-3.1.3]$ hdfs --daemon start namenode -
使用-importCheckpoint选项启动NameNode守护进程,从而将SecondaryNameNode中数据拷贝到NameNode目录中。
(1)修改hdfs-site.xml中的
<property>
<name>dfs.namenode.checkpoint.period</name>
<value>120</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/opt/module/hadoop-3.1.3/data/tmp/dfs/name</value>
</property>
(2)kill -9 NameNode进程
(3)删除NameNode存储的数据(/opt/module/hadoop-3.1.3/data/tmp/dfs/name)
[atguigu@hadoop102 hadoop-3.1.3]$ rm -rf /opt/module/hadoop-3.1.3/data/tmp/dfs/name/*
(4)如果SecondaryNameNode不和NameNode在一个主机节点上,需要将SecondaryNameNode存储数据的目录拷贝到NameNode存储数据的平级目录,并删除in_use.lock文件
[atguigu@hadoop102 dfs]$ scp -r atguigu@hadoop104:/opt/module/hadoop-3.1.3/data/tmp/dfs/namesecondary ./
[atguigu@hadoop102 namesecondary]$ rm -rf in_use.lock
[atguigu@hadoop102 dfs]$ pwd
/opt/module/hadoop-3.1.3/data/tmp/dfs
[atguigu@hadoop102 dfs]$ ls
data name namesecondary
(5)导入检查点数据(等待一会ctrl+c结束掉)
[atguigu@hadoop102 hadoop-3.1.3]$ bin/hdfs namenode -importCheckpoint
(6)启动NameNode
[atguigu@hadoop102 hadoop-3.1.3]$ hdfs --daemon start namenode
8. 集群安全模式
集群处于安全模式,不能执行重要操作(写操作)。集群启动完成后,自动退出安全模式。
(1)bin/hdfs dfsadmin -safemode get (功能描述:查看安全模式状态) (2)bin/hdfs dfsadmin -safemode enter (功能描述:进入安全模式状态) (3)bin/hdfs dfsadmin -safemode leave (功能描述:离开安全模式状态) (4)bin/hdfs dfsadmin -safemode wait (功能描述:等待安全模式状态)
9. DataNode工作机制
1. 数据完整性
思考:如果电脑磁盘里面存储的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0),但是存储该数据的磁盘坏了,一直显示是绿灯,是否很危险?同理DataNode节点上的数据损坏了,却没有发现,是否也很危险,那么如何解决呢?
数据完整性保证的方法
(1)当DataNode读取Block的时候,它会计算CheckSum。
(2)如果计算后的CheckSum,与Block创建时值不一样,说明Block已经损坏。
(3)Client读取其他DataNode上的Block。
(4)DataNode在其文件创建后周期验证CheckSum。
2. DataNode掉线时限设定
3. 服役新数据节点
直接启动DataNode即可关联到集群
# 启动节点
hdfs --daemon start datanode
sbin/yarn-daemon.sh start nodemanager
如果数据不平衡,需要执行平衡脚本
./start-balancer.sh