1.线程的生命周期与五种状态
1.新建(new):新创建了一个线程对象。
2.可运行(runnable):线程对象创建后,当调用线程对象的 start()方法,该线程处于就绪状态,等待被线程调度选中,获取cpu的使用权。
3.运行(running):可运行状态(runnable)的线程获得了cpu时间片(timeslice),执行程序代码。注:就绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;
4.阻塞(block):处于运行状态中的线程由于某种原因,暂时放弃对 CPU的使用权,停止执行,此时进入阻塞状态,直到其进入到就绪状态,才有机会再次被 CPU 调用以进入到运行状态。
阻塞的情况分三种:
- (一). 等待阻塞:运行状态中的线程执行 wait()方法,JVM会把该线程放入等待队列(waitting queue)中,使本线程进入到等待阻塞状态;
- (二). 同步阻塞:线程在获取 synchronized 同步锁失败(因为锁被其它线程所占用),则JVM会把该线程放入锁池(lock pool)中,线程会进入同步阻塞状态;
- (三). 其他阻塞: 通过调用线程的 sleep()或 join()或发出了 I/O 请求时,线程会进入到阻塞状态。当 sleep()状态超时、join()等待线程终止或者超时、或者 I/O 处理完毕时,线程重新转入就绪状态。
5.死亡(dead):线程run()、main()方法执行结束,或者因异常退出了run()方法,则该线程结束生命周期。死亡的线程不可再次复生。
2. JMM
JMM是指Java内存模型,不是Java内存布局,不是所谓的栈、堆、方法区。
每个Java线程都有自己的工作内存。操作数据,首先从主内存中读,得到一份拷贝,操作完毕后再写回到主内存。
JMM三大特点:
-
可见性
-
原子性
-
有序性
JMM可能带来可见性、原子性和有序性问题。所谓可见性,就是某个线程对主内存内容的更改,应该立刻通知到其它线程。原子性是指一个操作是不可分割的,不能执行到一半,就不执行了。所谓有序性,就是指令是有序的,不会被重排。
3. volatile关键字
volatile关键字是Java提供的一种轻量级同步机制。
3.1 volatile关键字的三大特性
- 保证可见性
- 不保证原子性
- 禁止指令重排
3.2 可见性
class MyData{
int number=0;
//volatile int number=0;
AtomicInteger atomicInteger=new AtomicInteger();
public void setTo60(){
this.number=60;
}
//此时number前面已经加了volatile,但是不保证原子性
public void addPlusPlus(){
number++;
}
public void addAtomic(){
atomicInteger.getAndIncrement();
}
}
//volatile可以保证可见性,及时通知其它线程主物理内存的值已被修改
private static void volatileVisibilityDemo() {
System.out.println("可见性测试");
MyData myData=new MyData();//资源类
//启动一个线程操作共享数据
new Thread(()->{
System.out.println(Thread.currentThread().getName()+"\t come in");
try {
TimeUnit.SECONDS.sleep(3);
myData.setTo60();
System.out.println(Thread.currentThread().getName()+"\t update number value: "+myData.number);
}catch (InterruptedException e){
e.printStackTrace();
}
},"AAA").start();
while (myData.number==0){
//main线程持有共享数据的拷贝,一直为0
}
System.out.println(Thread.currentThread().getName()+"\t mission is over. main get number value: "+myData.number);
}
MyData类是资源类,一开始number变量没有用volatile修饰,所以程序运行的结果是:
可见性测试
AAA come in
AAA update number value: 60
虽然一个线程把number修改成了60,但是main线程持有的仍然是最开始的0,所以一直循环,程序不会结束。
如果对number添加了volatile修饰,运行结果是:
AAA come in
AAA update number value: 60
main mission is over. main get number value: 60
可见某个线程对number的修改,会立刻反映到主内存上。
3.2 原子性
volatile并不能保证操作的原子性。这是因为,比如一条number++的操作,会形成3条指令。
getfield //读
iconst_1 //常量1
iadd //加操作
putfield //写操作
假设有3个线程,分别执行number++,都先从主内存中拿到最开始的值,number=0,然后三个线程分别进行操作。假设线程0执行完毕,number=1,也立刻通知到了其它线程,但是此时线程1、2已经拿到了number=0,所以结果就是写覆盖,线程1、2将number变成1。
解决的方式就是:
- 对
addPlusPlus()方法加锁。 - 使用
java.util.concurrent.AtomicInteger类。
private static void atomicDemo() {
System.out.println("原子性测试");
MyData myData=new MyData();
for (int i = 1; i <= 20; i++) {
new Thread(()->{
for (int j = 0; j <1000 ; j++) {
myData.addPlusPlus();
myData.addAtomic();
}
},String.valueOf(i)).start();
}
while (Thread.activeCount()>2){
Thread.yield();
}
System.out.println(Thread.currentThread().getName()+"\t int type finally number value: "+myData.number);
System.out.println(Thread.currentThread().getName()+"\t AtomicInteger type finally number value: "+myData.atomicInteger);
}
结果:可见,由于volatile不能保证原子性,出现了线程重复写的问题,最终结果比20000小。而AtomicInteger可以保证原子性。
原子性测试
main int type finally number value: 17542
main AtomicInteger type finally number value: 20000
3.3 有序性
package thread;
public class ResortSeqDemo {
int a=0;
boolean flag=false;
/*
多线程下flag=true可能先执行,还没走到a=1就被挂起。
其它线程进入method02的判断,修改a的值=5,而不是6。
*/
public void method01(){
a=1;
flag=true;
}
public void method02(){
if (flag){
a+=5;
System.out.println("*****retValue: "+a);
}
}
}
volatile可以保证有序性,也就是防止指令重排序。所谓指令重排序,就是出于优化考虑,CPU执行指令的顺序跟程序员自己编写的顺序不一致。就好比一份试卷,题号是老师规定的,是程序员规定的,但是考生(CPU)可以先做选择,也可以先做填空。
int x = 11; //语句1
int y = 12; //语句2
x = x + 5; //语句3
y = x * x; //语句4
以上例子,可能出现的执行顺序有1234、2134、1342,这三个都没有问题,最终结果都是x = 16,y=256。但是如果是4开头,就有问题了,y=0。这个时候就不需要指令重排序。
volatile底层是用CPU的内存屏障(Memory Barrier)指令来实现的,有两个作用,一个是保证特定操作的顺序性,二是保证变量的可见性。在指令之间插入一条Memory Barrier指令,告诉编译器和CPU,在Memory Barrier指令之间的指令不能被重排序。
3.4 哪些地方用到过volatile?
3.4.1 单例模式的安全问题
常见的DCL(Double Check Lock)模式虽然加了同步,但是在多线程下依然会有线程安全问题。
public class SingletonDemo {
private static SingletonDemo singletonDemo=null;
private SingletonDemo(){
System.out.println(Thread.currentThread().getName()+"\t 我是构造方法");
}
//DCL模式 Double Check Lock 双端检索机制:在加锁前后都进行判断
public static SingletonDemo getInstance(){
if (singletonDemo==null){
synchronized (SingletonDemo.class){
if (singletonDemo==null){
singletonDemo=new SingletonDemo();
}
}
}
return singletonDemo;
}
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
new Thread(()->{
SingletonDemo.getInstance();
},String.valueOf(i+1)).start();
}
}
}
这个漏洞比较tricky,很难捕捉,但是是存在的。instance=new SingletonDemo();可以大致分为三步
memory = allocate(); //1.分配内存
instance(memory); //2.初始化对象
instance = memory; //3.设置引用地址
其中2、3没有数据依赖关系,可能发生重排。如果发生,此时内存已经分配,那么instance=memory不为null。如果此时线程挂起,instance(memory)还未执行,对象还未初始化。由于instance!=null,所以两次判断都跳过,最后返回的instance没有任何内容,还没初始化。
解决的方法就是对singletondemo对象添加上volatile关键字,禁止指令重排。
4.CAS
CAS是指Compare And Swap,比较并交换,是一种很重要的同步思想。如果主内存的值跟期望值一样,那么就进行修改,否则一直重试,直到一致为止。
public class CASDemo {
public static void main(String[] args) {
AtomicInteger atomicInteger=new AtomicInteger(5);
System.out.println(atomicInteger.compareAndSet(5, 2019)+"\t current data : "+ atomicInteger.get());
//修改失败
System.out.println(atomicInteger.compareAndSet(5, 1024)+"\t current data : "+ atomicInteger.get());
}
}
第一次修改,期望值为5,主内存也为5,修改成功,为2019。第二次修改,期望值为5,主内存为2019,修改失败。
查看AtomicInteger.getAndIncrement()方法,发现其没有加synchronized也实现了同步。这是为什么?
4.1 CAS底层原理
AtomicInteger内部维护了volatile int value和private static final Unsafe unsafe两个比较重要的参数。
public final int getAndIncrement(){
return unsafe.getAndAddInt(this,valueOffset,1);
}
this当前对象
valueoffset 内存偏移量
1:固定增加量
AtomicInteger.getAndIncrement()调用了Unsafe.getAndAddInt()方法。Unsafe类的大部分方法都是native的,用来像C语言一样从底层操作内存。
public final int getAnddAddInt(Object var1,long var2,int var4){
int var5;
do{
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}
这个方法的var1和var2,就是根据对象和偏移量得到在主内存的快照值var5。然后compareAndSwapInt方法通过var1和var2得到当前主内存的实际值。如果这个实际值跟快照值相等,那么就更新主内存的值为var5+var4。如果不等,那么就一直循环,一直获取快照,一直对比,直到实际值和快照值相等为止。
比如有A、B两个线程,一开始都从主内存中拷贝了原值为3,A线程执行到var5=this.getIntVolatile,即var5=3。此时A线程挂起,B修改原值为4,B线程执行完毕,由于加了volatile,所以这个修改是立即可见的。A线程被唤醒,执行this.compareAndSwapInt()方法,发现这个时候主内存的值不等于快照值3,所以继续循环,重新从主内存获取。
4.2 CAS缺点
CAS实际上是一种自旋锁,
- 一直循环,开销比较大。
- 只能保证一个变量的原子操作,多个变量依然要加锁。
- 引出了ABA问题。
4.2.1 ABA问题
所谓ABA问题,就是比较并交换的循环,存在一个时间差,而这个时间差可能带来意想不到的问题。比如线程T1将值从A改为B,然后又从B改为A。线程T2看到的就是A,但是却不知道这个A发生了更改。尽管线程T2 CAS操作成功,但不代表就没有问题。
有的需求,比如CAS,只注重头和尾,只要首尾一致就接受。但是有的需求,还看重过程,中间不能发生任何修改,这就引出了AtomicReference原子引用。
4.2.2 AtomicReference
AtomicInteger对整数进行原子操作,如果是一个POJO呢?可以用AtomicReference来包装这个POJO,使其操作原子化。
User user1 = new User("Jack",25);
User user2 = new User("Lucy",21);
AtomicReference<User> atomicReference = new AtomicReference<>();
atomicReference.set(user1);
System.out.println(atomicReference.compareAndSet(user1,user2)); // true
System.out.println(atomicReference.compareAndSet(user1,user2)); //false
4.2.3 AtomicStampedReference和ABA问题的解决
使用AtomicStampedReference类可以解决ABA问题。这个类维护了一个“版本号”Stamp,在进行CAS操作的时候,不仅要比较当前值,还要比较版本号。只有两者都相等,才执行更新操作。
AtomicStampedReference.compareAndSet(expectedReference,newReference,oldStamp,newStamp);
详见ABADemo。
package thread;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.atomic.AtomicStampedReference;
public class ABADemo {
static AtomicReference<Integer> atomicReference = new AtomicReference<>(100);
static AtomicStampedReference<Integer> atomicStampedReference = new AtomicStampedReference<>(100, 1);
public static void main(String[] args) {
System.out.println("======ABA问题的产生======");
new Thread(() -> {
atomicReference.compareAndSet(100, 101);
atomicReference.compareAndSet(101, 100);
}, "t1").start();
new Thread(() -> {
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicReference.compareAndSet(100, 2019) + "\t" + atomicReference.get().toString());
}, "t2").start();
try { TimeUnit.SECONDS.sleep(2); } catch (InterruptedException e) { e.printStackTrace(); }
System.out.println("======ABA问题的解决======");
new Thread(() -> {
int stamp = atomicStampedReference.getStamp();
System.out.println(Thread.currentThread().getName() + "\t第一次版本号: " + stamp);
try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }
atomicStampedReference.compareAndSet(100,101,
atomicStampedReference.getStamp(),atomicStampedReference.getStamp()+1);
System.out.println(Thread.currentThread().getName() + "\t第二次版本号: " + atomicStampedReference.getStamp());
atomicStampedReference.compareAndSet(101,100,
atomicStampedReference.getStamp(),atomicStampedReference.getStamp()+1);
System.out.println(Thread.currentThread().getName() + "\t第三次版本号: " + atomicStampedReference.getStamp());
}, "t3").start();
new Thread(() -> {
int stamp = atomicStampedReference.getStamp();
System.out.println(Thread.currentThread().getName() + "\t第一次版本号: " + stamp);
try { TimeUnit.SECONDS.sleep(3); } catch (InterruptedException e) { e.printStackTrace(); }
boolean result=atomicStampedReference.compareAndSet(100,2019,
stamp,stamp+1);
System.out.println(Thread.currentThread().getName()+"\t修改成功与否:"+result+" 当前最新版本号"+atomicStampedReference.getStamp());
System.out.println(Thread.currentThread().getName()+"\t当前实际值:"+atomicStampedReference.getReference());
}, "t4").start();
}
}