题目地址
题目描述
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
- 每行中的整数从左到右按升序排列。
- 每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例 2:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 100
-104 <= matrix[i][j], target <= 104
题解
行和列分别二分查找
先通过二分查找,查找可能的行,对每行的行首进行二分查找,找到小于等于 target
的最大行首,对应的行就是可能的行
再在可能行上进行二分查找
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int rowIndex = binarySearchFirstColumn(matrix, target);
if (rowIndex < 0) {
return false;
}
return binarySearchRow(matrix[rowIndex], target);
}
public int binarySearchFirstColumn(int[][] matrix, int target) {
int low = -1, high = matrix.length - 1;
while (low < high) {
int mid = (high - low + 1) / 2 + low;
if (matrix[mid][0] <= target) {
low = mid;
} else {
high = mid - 1;
}
}
return low;
}
public boolean binarySearchRow(int[] row, int target) {
int low = 0, high = row.length - 1;
while (low <= high) {
int mid = (high - low) / 2 + low;
if (row[mid] == target) {
return true;
} else if (row[mid] > target) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return false;
}
}
复杂度分析
-
时间复杂度:,其中 和 分别是矩阵的行数和列数。
-
空间复杂度:。
直接二分查找
可以将每行进行收尾相接,这样就形成了一个单调递增的数组,直接二分查找即可
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length, n = matrix[0].length;
int low = 0, high = m * n - 1;
while (low <= high) {
int mid = (high - low) / 2 + low;
int x = matrix[mid / n][mid % n];
if (x < target) {
low = mid + 1;
} else if (x > target) {
high = mid - 1;
} else {
return true;
}
}
return false;
}
}
复杂度分析
-
时间复杂度:,其中 和 分别是矩阵的行数和列数。
-
空间复杂度:。