【做题也是一场游戏】74. 搜索二维矩阵

156 阅读1分钟

题目地址

leetcode-cn.com/problems/se…

题目描述

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

  • 每行中的整数从左到右按升序排列。
  • 每行的第一个整数大于前一行的最后一个整数。  

示例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true

示例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 100
-104 <= matrix[i][j], target <= 104

题解

行和列分别二分查找

先通过二分查找,查找可能的行,对每行的行首进行二分查找,找到小于等于 target 的最大行首,对应的行就是可能的行

再在可能行上进行二分查找

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int rowIndex = binarySearchFirstColumn(matrix, target);
        if (rowIndex < 0) {
            return false;
        }
        return binarySearchRow(matrix[rowIndex], target);
    }

    public int binarySearchFirstColumn(int[][] matrix, int target) {
        int low = -1, high = matrix.length - 1;
        while (low < high) {
            int mid = (high - low + 1) / 2 + low;
            if (matrix[mid][0] <= target) {
                low = mid;
            } else {
                high = mid - 1;
            }
        }
        return low;
    }

    public boolean binarySearchRow(int[] row, int target) {
        int low = 0, high = row.length - 1;
        while (low <= high) {
            int mid = (high - low) / 2 + low;
            if (row[mid] == target) {
                return true;
            } else if (row[mid] > target) {
                high = mid - 1;
            } else {
                low = mid + 1;
            }
        }
        return false;
    }
}

复杂度分析

  • 时间复杂度:O(logm+logn)=O(logmn)O(\log m+\log n)=O(\log mn),其中 mmnn 分别是矩阵的行数和列数。

  • 空间复杂度:O(1)O(1)

直接二分查找

可以将每行进行收尾相接,这样就形成了一个单调递增的数组,直接二分查找即可

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length, n = matrix[0].length;
        int low = 0, high = m * n - 1;
        while (low <= high) {
            int mid = (high - low) / 2 + low;
            int x = matrix[mid / n][mid % n];
            if (x < target) {
                low = mid + 1;
            } else if (x > target) {
                high = mid - 1;
            } else {
                return true;
            }
        }
        return false;
    }
}

复杂度分析

  • 时间复杂度:O(logmn)O(\log mn),其中 mmnn 分别是矩阵的行数和列数。

  • 空间复杂度:O(1)O(1)