散列冲突再好的散列函数也无法避免散列冲突,那究竟该如何解决散列冲突问题呢?
我们常用的散列冲突解决方法有两类,开放寻址法(open addressing)和链表法(chaining)。
1. 开放寻址法
开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。
线性探测的弊端 寻址最坏的时间复杂度为O(n)
对于开放寻址冲突解决方法,除了线性探测方法之外,还有另外两种比较经典的探测方法:
二次探测(Quadratic probing)和双重散列(Double hashing)。
所谓二次探测,跟线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是 hash(key)+0,hash(key)+1,hash(key)+2……而二次探测探测的步长就变成了原来的“二次方”,也就是说,它探测的下标序列就是 hash(key)+0,hash(key)+12,hash(key)+22……
(增大探测的步长)
所谓双重散列,意思就是不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。
(维护多个散列函数)
不管采用哪种方式,当散列中空闲位置不多的时候都会出现散列冲突的情况,所以为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。
例如JDK中HashMap的散列因子为0.75 意味着最多存储75%的内存空间。
散列表的装载因子=填入表中的元素个数/散列表的长度 告诉表中的元素最大个数为7 装载因子为0.7 那么散列的长度为10
2. 链表法
链表法是一种更加常用的散列冲突解决办法,相比开放寻址法,它要简单很多。我们来看这个图,在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。
当插入的时候,我们只需要通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是 O(1)。当查找、删除一个元素时,我们同样通过散列函数计算出对应的槽,然后遍历链表查找或者删除。那查找或删除操作的时间复杂度是多少呢?实际上,这两个操作的时间复杂度跟链表的长度 k 成正比,也就是 O(k)。对于散列比较均匀的散列函数来说,理论上讲,k=n/m,其中 n 表示散列中数据的个数,m 表示散列表中“槽”的个数。解答开篇