一、核心数据结构
// A WaitGroup must not be copied after first use.
// 使用noCopy保证WaitGroup在首次使用之后,不能被复制
type WaitGroup struct {
noCopy noCopy
// 64-bit value: high 32 bits are counter, low 32 bits are waiter count.
// 64-bit atomic operations require 64-bit alignment, but 32-bit
// compilers do not ensure it. So we allocate 12 bytes and then use
// the aligned 8 bytes in them as state, and the other 4 as storage
// for the sema.
state1 [3]uint32
}
这个是go的WaitGroup的数据结构,里面维护了两个变量noCopy和state1,其中noCopy的作用是保证WaitGroup在首次使用之后,不能被复制,避免指针field带来的不安全操作,state1用来维护goroutine counter和goroutine wait数量和一个信号量
根据源码中的注释
state1这个数据接占有3个unit32,相当与32bit*3=96bit=12bytes
二、核心函数
1、state函数
// state returns pointers to the state and sema fields stored within wg.state1.
//
func (wg *WaitGroup) state() (statep *uint64, semap *uint32) {
if uintptr(unsafe.Pointer(&wg.state1))%8 == 0 {
return (*uint64)(unsafe.Pointer(&wg.state1)), &wg.state1[2]
} else {
return (*uint64)(unsafe.Pointer(&wg.state1[1])), &wg.state1[0]
}
}
这个函数的主要功能是根据操作系统的位数来返回state(goroutine add数量和等待的goroutine数量)和sema(信号量)
2、Add函数
func (wg *WaitGroup) Add(delta int) {
// 获取state (goroutine counter 和 goroutine waiter)
statep, semap := wg.state()
// 静态检查
if race.Enabled {
_ = *statep // trigger nil deref early
if delta < 0 {
// Synchronize decrements with Wait.
race.ReleaseMerge(unsafe.Pointer(wg))
}
race.Disable()
defer race.Enable()
}
// 这里相当于将两个32的uint转成64位的uint,高32位代表goroutine counter,所以后面的delta要左移32位,这样才能把增量值加到goroutine counter
state := atomic.AddUint64(statep, uint64(delta)<<32)
// 将state左移得到高32位的goroutine counter数量
v := int32(state >> 32)
// 64位取低32位,就是goroutine waiter的数量
w := uint32(state)
if race.Enabled && delta > 0 && v == int32(delta) {
// The first increment must be synchronized with Wait.
// Need to model this as a read, because there can be
// several concurrent wg.counter transitions from 0.
race.Read(unsafe.Pointer(semap))
}
if v < 0 {
panic("sync: negative WaitGroup counter")
}
if w != 0 && delta > 0 && v == int32(delta) {
panic("sync: WaitGroup misuse: Add called concurrently with Wait")
}
// 如果goroutine counter大于0或者goroutine waiter等于0
if v > 0 || w == 0 {
return
}
// 能进入这里的逻辑是(v<=0&&w!=0)
// 所有在执行的goroutine已经Done并且有goroutine正在等待
// This goroutine has set counter to 0 when waiters > 0.
// Now there can't be concurrent mutations of state:
// - Adds must not happen concurrently with Wait,
// - Wait does not increment waiters if it sees counter == 0.
// Still do a cheap sanity check to detect WaitGroup misuse.
if *statep != state {
panic("sync: WaitGroup misuse: Add called concurrently with Wait")
}
// Reset waiters count to 0.
*statep = 0
for ; w != 0; w-- {
// 通知所有正在等待的协程
runtime_Semrelease(semap, false, 0)
}
}
3、Wait函数
func (wg *WaitGroup) Wait() {
// 获取state (goroutine counter 和 goroutine waiter)
statep, semap := wg.state()
if race.Enabled {
_ = *statep // trigger nil deref early
race.Disable()
}
for {
// 从内存中加载goroutine counter 和 goroutine waiter
state := atomic.LoadUint64(statep)
// goroutine counter 高32位
v := int32(state >> 32)
// waiter num 低32位
w := uint32(state)
// 说明没有goroutine需要等待
if v == 0 {
// Counter is 0, no need to wait.
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(wg))
}
return
}
// Increment waiters count.
// 低32位 waiter num + 1
if atomic.CompareAndSwapUint64(statep, state, state+1) {
if race.Enabled && w == 0 {
// Wait must be synchronized with the first Add.
// Need to model this is as a write to race with the read in Add.
// As a consequence, can do the write only for the first waiter,
// otherwise concurrent Waits will race with each other.
race.Write(unsafe.Pointer(semap))
}
// 等待信号量>0,然后将其减一
// 阻塞
runtime_Semacquire(semap)
if *statep != 0 {
panic("sync: WaitGroup is reused before previous Wait has returned")
}
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(wg))
}
return
}
}
}
4、在Add和Wait函数中涉及到两个并发原语
runtime_Semrelease(释放信号量)和runtime_Semacquire(申请信号量)
// Semacquire waits until *s > 0 and then atomically decrements it.
// It is intended as a simple sleep primitive for use by the synchronization
// library and should not be used directly.
// 等待(阻塞)直到s>0被唤醒,并且将s的值原子的减1(表示已经消耗了一次信号量,所以要减1)
func runtime_Semacquire(s *uint32)
// Semrelease atomically increments *s and notifies a waiting goroutine
// if one is blocked in Semacquire.
// It is intended as a simple wakeup primitive for use by the synchronization
// library and should not be used directly.
// If handoff is true, pass count directly to the first waiter.
// skipframes is the number of frames to omit during tracing, counting from
// runtime_Semrelease's caller.
// 以原子方式递增*s(加1)并通知等待的goroutine
func runtime_Semrelease(s *uint32, handoff bool, skipframes int)
三、总结
1、考虑了操作系统32位和64位的差异
2、利用原子操作避免并发带来的问题
3、利用信号量操作,传递通知
4、WaitGroup成员state1变量不是指针,需要使用指针作为入参(因为go是值传递,如果直接传入WaitGroup的值,相当于把成员复制了,地址不一样了),不然可能会死锁
func T(s *sync.WaitGroup) {
defer s.Done()
}