TCP/IP是个协议组,可分为三个层次:网络层、传输层和应用层。
在网络层有IP协议、ICMP协议、ARP协议、RARP协议和BOOTP协议。
在传输层中有TCP协议与UDP协议。
在应用层有FTP、HTTP、TELNET、SMTP、DNS等协议。
因此,HTTP本身就是一个协议,是从Web服务器传输超文本到本地浏览器的传送协议。
原文链接:blog.csdn.net/frank3g/art…
TCP头部
源端口和目的端口在TCP层确定双方进程,序列号表示的是报文段数据中的第一个字节号,ACK表示确认号,该确认号的发送方期待接收的下一个序列号,即最后被成功接收的数据字节序列号加1,这个字段只有在ACK位被启用的时候才有效。
当新建一个连接时,从客户端发送到服务端的第一个报文段的SYN位被启用,这称为SYN报文段,这时序列号字段包含了在本次连接的这个方向上要使用的第一个序列号,即初始序列号ISN,之后发送的数据是ISN加1,因此SYN位字段会消耗一个序列号,这意味着使用重传进行可靠传输。而不消耗序列号的ACK则不是。
头部长度(图中的数据偏移)以32位字为单位,也就是以4bytes为单位,它只有4位,最大为15,因此头部最大长度为60字节,而其最小为5,也就是头部最小为20字节(可变选项为空)。
ACK —— 确认,使得确认号有效。 RST —— 重置连接(经常看到的reset by peer)就是此字段搞的鬼。 SYN —— 用于初如化一个连接的序列号。 FIN —— 该报文段的发送方已经结束向对方发送数据。
当一个连接被建立或被终止时,交换的报文段只包含TCP头部,而没有数据**。**
三次握手
第一次握手
客户端向服务端发送连接请求报文段。该报文段的头部中SYN=1,ACK=0,seq=x。请求发送后,客户端便进入SYN-SENT状态。PS1:SYN=1,ACK=0表示该报文段为连接请求报文。PS2:x为本次TCP通信的字节流的初始序号。 TCP规定:SYN=1的报文段不能有数据部分,但要消耗掉一个序号。
第二次握手
服务端收到连接请求报文段后,如果同意连接,则会发送一个应答:SYN=1,ACK=1,seq=y,ack=x+1。 该应答发送完成后便进入SYN-RCVD状态。PS1:SYN=1,ACK=1表示该报文段为连接同意的应答报文。PS2:seq=y表示服务端作为发送者时,发送字节流的初始序号。PS3:ack=x+1表示服务端希望下一个数据报发送序号从x+1开始的字节。
第三次握手
当客户端收到连接同意的应答后,还要向服务端发送一个确认报文段,表示:服务端发来的连接同意应答已经成功收到。 该报文段的头部为:ACK=1,seq=x+1,ack=y+1。 客户端发完这个报文段后便进入ESTABLISHED状态,服务端收到这个应答后也进入ESTABLISHED状态,此时连接的建立完成!
四次挥手
TCP连接的释放一共需要四步,因此称为『四次挥手』。
我们知道,TCP连接是双向的,因此在四次挥手中,前两次挥手用于断开一个方向的连接,后两次挥手用于断开另一方向的连接。
第一次挥手
若A认为数据发送完成,则它需要向B发送连接释放请求。该请求只有报文头,头中携带的主要参数为: FIN=1,seq=u。此时,A将进入FIN-WAIT-1状态。
PS1:FIN=1表示该报文段是一个连接释放请求。
PS2:seq=u,u-1是A向B发送的最后一个字节的序号。
第二次挥手
B收到连接释放请求后,会通知相应的应用程序,告诉它A向B这个方向的连接已经释放。此时B进入CLOSE-WAIT状态,并向A发送连接释放的应答,其报文头包含:
ACK=1,seq=v,ack=u+1。
PS1:ACK=1:除TCP连接请求报文段以外,TCP通信过程中所有数据报的ACK都为1,表示应答。
PS2:seq=v,v-1是B向A发送的最后一个字节的序号。
PS3:ack=u+1表示希望收到从第u+1个字节开始的报文段,并且已经成功接收了前u个字节。
A收到该应答,进入FIN-WAIT-2状态,等待B发送连接释放请求。第二次挥手完成后,A到B方向的连接已经释放,B不会再接收数据,A也不会再发送数据。但B到A方向的连接仍然存在,B可以继续向A发送数据。
第三次挥手
当B向A发完所有数据后,向A发送连接释放请求,请求头:FIN=1,ACK=1,seq=w,ack=u+1。B便进入LAST-ACK状态。
第四次挥手
A收到释放请求后,向B发送确认应答,此时A进入TIME-WAIT状态。该状态会持续2MSL时间,若该时间段内没有B的重发请求的话,就进入CLOSED状态,撤销TCB。当B收到确认应答后,也便进入CLOSED状态,撤销TCB。
为什么连接建立需要三次握手,而不是两次握手?
防止失效的连接请求报文段被服务端接收,从而产生错误。PS:失效的连接请求:若客户端向服务端发送的连接请求丢失,客户端等待应答超时后就会再次发送连接请求,此时,上一个连接请求就是『失效的』。若建立连接只需两次握手,客户端并没有太大的变化,仍然需要获得服务端的应答后才进入ESTABLISHED状态,而服务端在收到连接请求后就进入ESTABLISHED状态。此时如果网络拥塞,客户端发送的连接请求迟迟到不了服务端,客户端便超时重发请求,如果服务端正确接收并确认应答,双方便开始通信,通信结束后释放连接。此时,如果那个失效的连接请求抵达了服务端,由于只有两次握手,服务端收到请求就会进入ESTABLISHED状态,等待发送数据或主动发送数据。但此时的客户端早已进入CLOSED状态,服务端将会一直等待下去,这样浪费服务端连接资源。
为什么A要先进入TIME-WAIT状态,等待2MSL时间后才进入CLOSED状态?
为了保证B能收到A的确认应答。 若A发完确认应答后直接进入CLOSED状态,那么如果该应答丢失,B等待超时后就会重新发送连接释放请求,但此时A已经关闭了,不会作出任何响应,因此B永远无法正常关闭。
TCP/UDP的区别
1、 TCP面向连接 (如打电话要先拨号建立连接); UDP是无连接 的,即发送数据之前不需要建立连接 2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付
Tcp通过校验和,重传控制,序号标识,滑动窗口、确认应答实现可靠传输。如丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。
3、UDP具有较好的实时性,工作效率比TCP高,适用于对高速传输和实时性有较高的通信或广播通信。
4.每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5、TCP对系统资源要求较多,UDP对系统资源要求较少。
原文链接:blog.csdn.net/xiaobangkua…
为什么UDP有时比TCP更有优势?
UDP以其简单、传输快的优势,在越来越多场景下取代了TCP,如实时游戏。
(1)网速的提升给UDP的稳定性提供可靠网络保障,丢包率很低,如果使用应用层重传,能够确保传输的可靠性。
(2)TCP为了实现网络通信的可靠性,使用了复杂的拥塞控制算法,建立了繁琐的握手过程,由于TCP内置的系统协议栈中,极难对其进行改进。
采用TCP,一旦发生丢包,TCP会将后续的包缓存起来,等前面的包重传并接收到后再继续发送,延时会越来越大,基于UDP对实时性要求较为严格的情况下,采用自定义重传机制,能够把丢包产生的延迟降到最低,尽量减少网络问题对游戏性造成影响。