世界上并没有完美的程序,但是我们并不因此而沮丧,因为写程序就是一个不断追求完美的过程。
问 :sparse_vector有什么特点?
答 :
问 :sparse_vector如何使用?
答 :
# sparse_vector
PUT /sparse_vector_test
{
"mappings" : {
"properties" : {
"my_sparse_vector" : {
"type" : "sparse_vector"
},
"status" : {"type" : "integer"}
}
}
}
# 索引
POST /sparse_vector_test/_doc
{
"my_sparse_vector" : {"1": 0.6, "5": -0.8, "100": 3},
"status" : 1
}
# 索引
POST /sparse_vector_test/_doc
{
"my_sparse_vector" : {"1": 0.5, "5": -0.5, "100": 1},
"status" : 1
}
# 索引
POST /sparse_vector_test/_doc
{
"my_sparse_vector" : {"1": 0.9, "5": -1.8, "100": 5},
"status" : 1
}
# 搜索
GET /sparse_vector_test/_search
{
"query" : {
"script_score" : {
"query" : {
"bool" : {
"filter" : {
"term" : {
"status" : 1
}
}
}
},
"script" : {
"source" : "cosineSimilaritySparse(params.query_vector,'my_sparse_vector') + 1.0",
"params" : {
"query_vector" : {"1": 0.5, "5": -0.5, "100": 1}
}
}
}
}
}
# 结果
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 2.0,
"hits" : [
{
"_index" : "sparse_vector_test",
"_type" : "_doc",
"_id" : "TWdCbHgBVbS9eSDZku5x",
"_score" : 2.0,
"_source" : {
"my_sparse_vector" : {
"1" : 0.5,
"5" : -0.5,
"100" : 1
},
"status" : 1
}
},
{
"_index" : "sparse_vector_test",
"_type" : "_doc",
"_id" : "TmdCbHgBVbS9eSDZne5Y",
"_score" : 1.9619555,
"_source" : {
"my_sparse_vector" : {
"1" : 0.9,
"5" : -1.8,
"100" : 5
},
"status" : 1
}
},
{
"_index" : "sparse_vector_test",
"_type" : "_doc",
"_id" : "TGdCbHgBVbS9eSDZiO4r",
"_score" : 1.9553359,
"_source" : {
"my_sparse_vector" : {
"1" : 0.6,
"5" : -0.8,
"100" : 3
},
"status" : 1
}
}
]
}
}