ACM模版
矩阵原理单独求解
#define mod(a, m) ((a) % (m) + (m)) % (m)
const int MOD = 1e9 + 9;
struct MATRIX
{
long long a[2][2];
};
MATRIX a;
long long f[2];
void ANS_Cf(MATRIX a)
{
f[0] = mod(a.a[0][0] + a.a[1][0], MOD);
f[1] = mod(a.a[0][1] + a.a[1][1], MOD);
return ;
}
MATRIX MATRIX_Cf(MATRIX a, MATRIX b)
{
MATRIX ans;
int k;
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 2; j++)
{
ans.a[i][j] = 0;
k = 0;
while (k < 2)
{
ans.a[i][j] += a.a[k][i] * b.a[j][k];
ans.a[i][j] = mod(ans.a[i][j], MOD);
++k;
}
}
}
return ans;
}
MATRIX MATRIX_Pow(MATRIX a, long long n)
{
MATRIX ans;
ans.a[0][0] = 1;
ans.a[1][1] = 1;
ans.a[0][1] = 0;
ans.a[1][0] = 0;
while (n)
{
if (n & 1)
{
ans = MATRIX_Cf(ans, a);
}
n = n >> 1;
a = MATRIX_Cf(a, a);
}
return ans;
}
int main()
{
long long n;
while (cin >> n)
{
if (n == 1)
{
cout << '1' << '\n';
continue;
}
a.a[0][0] = a.a[0][1] = a.a[1][0] = 1;
a.a[1][1] = 0;
a = MATRIX_Pow(a, n - 2);
ANS_Cf(a);
cout << f[0] << '\n';
}
return 0;
}
应用示例
51Nod 1242 斐波那契数列的第N项