使用加权轮询算法和 Go 实现 HTTP 负载分发代理

352 阅读8分钟

摘要:最近看到了一篇文章,细讲了各种分布式调度原理,其中加权轮询算法(Weighted Round-Robin)应该是离我们最近的一种方式了,Nginx 的 Upstream 就是用的这个算法,这个算法可以根据权重使得每个服务器能够均匀的负载请求,本篇主要就是来总结下使用这个算法以及 Go 内置的方法来实现一个简单的加权轮询的 HTTP 负载分发代理,并对负载分发及路由做一些延伸思考。

本篇主要从以下两个方面进行展开:

  1. 使用 Go 实现一个反向代理

  2. 使用 WRR 算法实现此反向代理的加权轮询

什么是代理

代理一般情况下我们是分为正向代理和反向代理两种形式

正向代理一般是配置在客户端,客户端需要知道代理的地址并自行配置

反向代理一般情况下对客户端是透明的,主要是配置在服务器上,大部分我们访问的 Web 应用都是通过反向代理进行配置的,这块主要是 Nginx 和 Apache 提供的功能,比如 Nginx:

`location / {`
 `proxy_pass: http://127.0.0.1:3000`
`}`

还有一个简单区分的方式,我们可以看这个代理的作用,如果已知转发的后端,那这个应该是反向代理,如果被转发到哪里去是一个不确定性因素,那这应该是一个正向代理,这是我的个人理解,欢迎读者批评指正 :)

Go ReverseProxy

Go 提供了一个 httputil.ReverseProxy 代理框架,能够让我们快速的实现一个反向代理而无需关注其他细节。

打开reverseproxy.go源码可以看到对 ReverseProxy 的简介

`// ReverseProxy is an HTTP Handler that takes an incoming request and`
`// sends it to another server, proxying the response back to the`
`// client.`
`//`
`// ReverseProxy automatically sets the client IP as the value of the`
`// X-Forwarded-For header.`
`// If an X-Forwarded-For header already exists, the client IP is`
`// appended to the existing values.`
`// To prevent IP spoofing, be sure to delete any pre-existing`
`// X-Forwarded-For header coming from the client or`
`// an untrusted proxy.`

ReverseProxy 是一个用来转发请求的服务,并把相关的响应原封不动的返回给客户端,这个过程中 ReverseProxy 会自动给X-Forwarded-For添加或者追加客户端 IP

继续往下看

`type ReverseProxy struct {`
 `// Director must be a function which modifies`
 `// the request into a new request to be sent`
 `// using Transport. Its response is then copied`
 `// back to the original client unmodified.`
 `// Director must not access the provided Request`
 `// after returning.`
 `Director func(*http.Request)`
 `// The transport used to perform proxy requests.`
 `// If nil, http.DefaultTransport is used.`
 `Transport http.RoundTripper`
`...`

ReverseProxy 是一个结构体,其中最重要的是 Director,我们需要实现一个 Director 函数,这个函数主要就是让我们可以定义对request的修改,比如修改协议、回源地址、路径等信息,然后传递给http.RoundTripper进行转发,RoundTripper 主要的功能就是返回响应给一个给定的请求,具体可以查看client.go源码,这里不再发散

一个简单的反向代理服务

下面是使用 ReverseProxy 实现的一个简单的反向代理服务:

`package main`
`import (`
 `"fmt"`
 `"net/http"`
 `"net/http/httputil"`
 `"net/url"`
`)`
`func main() {`
 `// generateBackend`
 `node := url.URL{Host: "127.0.0.1:7791", Scheme: "http"}`
 `// generate a reverse proxy`
 `reverseProxy := httputil.NewSingleHostReverseProxy(&node)`
 `fmt.Println("Server started on port 7788...")`
 `if err := http.ListenAndServe("127.0.0.1:7788", reverseProxy); err != nil {`
 `fmt.Printf("Server failed to start, error: %s \n", err.Error())`
 `}`
`}`

我们启动此服务,并且使用我自己写的一个testServer.go进行测试

`// generate 3 server to handle request for test`
`package main`
`import (`
 `"fmt"`
 `"net/http"`
`)`
`type testServer struct {`
 `addr         string`
 `requestCount int`
`}`
`func (server *testServer) handler(res http.ResponseWriter, req *http.Request) {`
 `server.requestCount += 1`
 `fmt.Printf("%s: %s %s on serverHandlerPort: %s, Total: %d\n",`
 `req.Proto, req.Method, req.RequestURI, server.addr, server.requestCount)`
 `res.Write([]byte(server.addr))`
`}`
`func main() {`
 `nodeA := testServer{"127.0.0.1:7791", 0}`
 `nodeB := testServer{"127.0.0.1:7792", 0}`
 `nodeC := testServer{"127.0.0.1:7793", 0}`
 `nodes := []testServer{nodeA, nodeB, nodeC}`
 `serverA := http.NewServeMux()`
 `serverA.HandleFunc("/", nodeA.handler)`
 `go http.ListenAndServe(nodeA.addr, serverA)`
 `serverB := http.NewServeMux()`
 `serverB.HandleFunc("/", nodeB.handler)`
 `go http.ListenAndServe(nodeB.addr, serverB)`
 `serverC := http.NewServeMux()`
 `serverC.HandleFunc("/", nodeC.handler)`
 `go http.ListenAndServe(nodeC.addr, serverC)`
 `var comm int`
 `for _, node := range nodes {`
 `fmt.Printf("Server %s started...\n", node.addr)`
 `}`
 `fmt.Println("All server are started, input any key and enter to quit...")`
 `fmt.Scan(&comm)`
 `fmt.Printf("Result: ServerA: %d  ServerB: %d  ServerC: %d\n",`
 `nodeA.requestCount, nodeB.requestCount, nodeC.requestCount)`
`}`

使用命令访问curl 127.0.0.1:7788,可以看到已经将请求转发到后端127.0.0.1:7791

图片

以上,我们就已经实现了一个反向代理,用来对请求进行代理,但这并不是我们想要的,我们想要的是分发,所以我们继续改造此脚本,使它能够配置多个后端进行轮询

支持多个后端轮询的反向代理服务

参照源码中NewSingleHostReverseProxy函数自定义即可

`package main`
`import (`
 `"fmt"`
 `"math/rand"`
 `"net/http"`
 `"net/http/httputil"`
 `"net/url"`
`)`
`//func NewSingleHostReverseProxy(target *url.URL) *ReverseProxy {`
`//    targetQuery := target.RawQuery`
`//    director := func(req *http.Request) {`
`//        req.URL.Scheme = target.Scheme`
`//        req.URL.Host = target.Host`
`//        req.URL.Path = singleJoiningSlash(target.Path, req.URL.Path)`
`//        if targetQuery == "" || req.URL.RawQuery == "" {`
`//            req.URL.RawQuery = targetQuery + req.URL.RawQuery`
`//        } else {`
`//            req.URL.RawQuery = targetQuery + "&" + req.URL.RawQuery`
`//        }`
`//        if _, ok := req.Header["User-Agent"]; !ok {`
`//            // explicitly disable User-Agent so it's not set to default value`
`//            req.Header.Set("User-Agent", "")`
`//        }`
`//    }`
`//    return &ReverseProxy{Director: director}`
`//}`
`// config for backends`
`var nodes = [] *url.URL{`
 `{Host: "127.0.0.1:7791", Scheme: "http"},`
 `{Host: "127.0.0.1:7792", Scheme: "http"},`
 `{Host: "127.0.0.1:7793", Scheme: "http"},`
`}`
`func generateReverseProxy() *httputil.ReverseProxy{`
 `// generate director`
 `director := func(req *http.Request) {`
 `backend := nodes[rand.Int()%len(nodes)]`
 `req.URL.Scheme = backend.Scheme`
 `req.URL.Host = backend.Host`
 `fmt.Printf("Scheme: %s Host: %s Path: %s\n", req.Proto, req.Host, req.RequestURI)`
 `}`
 `return &httputil.ReverseProxy{Director: director}`
`}`
`func main() {`
 `// generate a reverse proxy`
 `reverseProxy := generateReverseProxy()`
 `fmt.Println("Server started on port 7788...")`
 `if err := http.ListenAndServe("127.0.0.1:7788", reverseProxy); err != nil {`
 `fmt.Printf("Server failed to start, error: %s \n", err.Error())`
 `}`
`}`

结果如下图

图片

一共访问40次,分布均匀性一般般,所以接下来就是改造为加权轮询算法进行后端服务器的选择

加权轮询算法(Weighted Round-Robin)

加权轮询算法的实现可以参见 Nginx 的一次代码提交 Upstream: smooth weighted round-robin balancing.

简单来说,Nginx 的这个加权轮询算法不仅仅可以实现按照权重进行分发负载,也实现了平滑性,什么叫平滑呢,就是说你设置了这么一组带权重的后端

 `{HostA: "127.0.0.1:7791", Weight: 3},`
 `{HostB: "127.0.0.1:7792", Weight: 1},`
 `{HostC: "127.0.0.1:7793", Weight: 1}`

比如这时来了5次访问,那么它的分发如果是AAABC,我们就不能说这个是「平滑」的,因为可能会给第一台机器造成压力过大,虽然我们认为它的性能比较好,但是还是会造成同一时间压力过大的问题。而 WRR 算法就可以实现平滑的分发,使分发变成ABACA,避免同一时间造成压力过大的问题,来看看这个算法如何实现的:

`For edge case weights like { 5, 1, 1 } we now produce { a, a, b, a, c, a, a }`
`sequence instead of { c, b, a, a, a, a, a } produced previously.`
`Algorithm is as follows: on each peer selection we increase current_weight`
`of each eligible peer by its weight, select peer with greatest current_weight`
`and reduce its current_weight by total number of weight points distributed`
`among peers.`
`In case of { 5, 1, 1 } weights this gives the following sequence of`
`current_weight's:`
 `a  b  c`
 `0  0  0  (initial state)`
 `5  1  1  (a selected)`
 `-2  1  1`
 `3  2  2  (a selected)`
 `-4  2  2`
 `1  3  3  (b selected)`
 `1 -4  3`
 `6 -3  4  (a selected)`
 `-1 -3  4`
 `4 -2  5  (c selected)`
 `4 -2 -2`
 `9 -1 -1  (a selected)`
 `2 -1 -1`
 `7  0  0  (a selected)`
 `0  0  0`
`To preserve weight reduction in case of failures the effective_weight`
`variable was introduced, which usually matches peer's weight, but is`
`reduced temporarily on peer failures.`

简单来说就是:

  1. 每一轮选择都用自身的权重加到当前权重

  2. 当前选中的节点的当前权重需要减去总权重

先来看看算法用 Go 的实现

`package main`
`import "fmt"`
`type wrrServer struct {`
 `address       string`
 `weight        int`
 `currentWeight int`
`}`
`// nginx weighted round-robin balancing`
`// view: https://github.com/phusion/nginx/commit/27e94984486058d73157038f7950a0a36ecc6e35`
`func getBestServer(servers []*wrrServer) (b *wrrServer) {`
 `allWeight := 0`
 `for _, server := range servers {`
 `if server == nil {`
 `return nil`
 `}`
 `allWeight += server.weight            // 计算总权重`
 `server.currentWeight += server.weight // 当前权重加上权重`
 `if b == nil || server.currentWeight > b.currentWeight { // 如果最优节点不存在或者当前节点由于最优节点,则赋值或者替换`
 `b = server`
 `}`
 `}`
 `if b == nil {`
 `return nil`
 `}`
 `b.currentWeight -= allWeight`
 `return b`
`}`
`func main() {`
 `servers := []*wrrServer{`
 `{"zoker.server.wtm:5555", 5, 0},`
 `{"zoker.server.wtm:2222", 2, 0},`
 `{"zoker.server.wtm:1111", 1, 0},`
 `}`
 `for i := 0; i < 20; i++ {`
 `bestServer := getBestServer(servers)`
 `if bestServer == nil {`
 `continue`
 `}`
 `fmt.Printf("Selected server: %s Weight: %d\n", bestServer.address, bestServer.weight)`
 `}`
`}`

执行结果:

`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:2222 Weight: 2`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:1111 Weight: 1`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:2222 Weight: 2`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:2222 Weight: 2`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:1111 Weight: 1`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:2222 Weight: 2`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:2222 Weight: 2`
`Selected server: zoker.server.wtm:5555 Weight: 5`
`Selected server: zoker.server.wtm:5555 Weight: 5`

可以看到,是比较分散的,也就是我们称之为的「平滑」

实现基于 WRR 的反向代理

了解了加权轮询算法之后,我们来改造上面的分发代理,上面是直接取随机数然后取余来达到随机的效果的,我们来改造 generateReverseProxy()使它能够具备加权分发的能力

`package main`
`import (`
 `"fmt"`
 `"net/http"`
 `"net/http/httputil"`
 `"net/url"`
`)`
`type Nodes struct {`
 `node          url.URL`
 `weight        int`
 `currentWeight int`
`}`
`// config backends and weight`
`var nodes = []*Nodes{`
 `{url.URL{Host: "127.0.0.1:7791", Scheme: "http"}, 5, 0},`
 `{url.URL{Host: "127.0.0.1:7792", Scheme: "http"}, 1, 0},`
 `{url.URL{Host: "127.0.0.1:7793", Scheme: "http"}, 1, 0},`
`}`
`// using wrr to select nodes`
`func getBestNode() (bestNode *Nodes) {`
 `allWeight := 0`
 `for _, node := range nodes {`
 `allWeight += node.weight`
 `node.currentWeight += node.weight`
 `if bestNode == nil || node.currentWeight > bestNode.currentWeight {`
 `bestNode = node`
 `}`
 `}`
 `bestNode.currentWeight -= allWeight`
 `fmt.Printf("Select %s %d %d \n", bestNode.node.Host, bestNode.weight, bestNode.currentWeight)`
 `return bestNode`
`}`
`func generateReverseProxy() *httputil.ReverseProxy {`
 `// generate director`
 `director := func(req *http.Request) {`
 `backend := getBestNode().node`
 `req.URL.Scheme = backend.Scheme`
 `req.URL.Host = backend.Host`
 `//fmt.Printf("Scheme: %s Host: %s Path: %s\n", req.Scheme, req.Host, req.RequestURI)`
 `}`
 `return &httputil.ReverseProxy{Director: director}`
`}`
`func main() {`
 `// generate a reverse proxy`
 `reverseProxy := generateReverseProxy()`
 `fmt.Println("Server started on port 7788...")`
 `if err := http.ListenAndServe("127.0.0.1:7788", reverseProxy); err != nil {`
 `fmt.Printf("Server failed to start, error: %s \n", err.Error())`
 `}`
`}`

启动服务后,我们模拟7次请求

for i in {1..7}; do curl 127.0.0.1:7788; done

图片

可以看到7次请求刚好按照权重分布,并且整个过程是按照 WRR 算法均匀分布的。

至此,一个基于加权轮询算法的反向代理就实现了,整个例子还缺少一些错误判定之类的工作,加上之后基本就可以使用了。

进阶思考

上面的例子我们通过修改请求的SchemeHost来实现分发

 `req.URL.Scheme = backend.Scheme`
 `req.URL.Host = backend.Host`

我们打开url.go查看 URL 结构体的定义

`// A URL represents a parsed URL (technically, a URI reference).`
`//`
`// The general form represented is:`
`//`
`//    [scheme:][//[userinfo@]host][/]path[?query][#fragment]`
`//`
`// URLs that do not start with a slash after the scheme are interpreted as:`
`//`
`//    scheme:opaque[?query][#fragment]`
`//`
`// Note that the Path field is stored in decoded form: /%47%6f%2f becomes /Go/.`
`// A consequence is that it is impossible to tell which slashes in the Path were`
`// slashes in the raw URL and which were %2f. This distinction is rarely important,`
`// but when it is, the code should use RawPath, an optional field which only gets`
`// set if the default encoding is different from Path.`
`//`
`// URL's String method uses the EscapedPath method to obtain the path. See the`
`// EscapedPath method for more details.`
`type URL struct {`
 `Scheme     string`
 `Opaque     string    // encoded opaque data`
 `User       *Userinfo // username and password information`
 `Host       string    // host or host:port`
 `Path       string    // path (relative paths may omit leading slash)`
 `RawPath    string    // encoded path hint (see EscapedPath method)`
 `ForceQuery bool      // append a query ('?') even if RawQuery is empty`
 `RawQuery   string    // encoded query values, without '?'`
 `Fragment   string    // fragment for references, without '#'`
`}`

有这么多属性可以使用,能够带给我们更多的思考:

  1. 通过请求的 Path 进行逻辑判定,可以指定后端服务器或者进行 URL rewrite (Gitee 就是使用 Path 进行路由的指定和分片的)

  2. 可以追加 URL RawQuery,比如添加一个from=xxx,告诉后端,这个请求是从哪个反代发出的

  3. 根据 User 以及 Path 实现鉴权,可以实现类似网关的功能

  4. 通过请求的 Host 和 Path 来判定转发到什么目录,可以实现类似于 Gitee Pages 的多租户静态网站功能

  5. ...