Redis内存满了会怎么样?

·  阅读 102

Redis占用内存大小

1、通过配置文件配置

通过在Redis安装目录下面的redis.conf配置文件中添加以下配置设置内存大小

//设置Redis最大占用内存大小为100M
maxmemory 100mb
复制代码

redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的

2、通过命令修改

Redis支持运行时通过命令动态修改内存大小

//设置Redis最大占用内存大小为100M
127.0.0.1:6379> config set maxmemory 100mb
//获取设置的Redis能使用的最大内存大小
127.0.0.1:6379> config get maxmemory
复制代码

Redis的内存淘汰

既然可以设置Redis最大占用内存大小,那么配置的内存就有用完的时候。那在内存用完的时候,还继续往Redis里面添加数据不就没内存可用了吗?

实际上Redis定义了几种策略用来处理这种情况:

  • noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)
  • allkeys-lru:从所有key中使用LRU算法进行淘汰
  • volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰
  • allkeys-random:从所有key中随机淘汰数据
  • volatile-random:从设置了过期时间的key中随机淘汰
  • volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰

当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误

如何获取及设置内存淘汰策略

获取当前内存淘汰策略:

127.0.0.1:6379> config get maxmemory-policy

通过配置文件设置淘汰策略(修改redis.conf文件):

maxmemory-policy allkeys-lru

通过命令修改淘汰策略:

127.0.0.1:6379> config set maxmemory-policy allkeys-lru

LRU在Redis中的实现

近似LRU算法

Redis使用的是近似LRU算法,它跟常规的LRU算法还不太一样。近似LRU算法通过随机采样法淘汰数据,每次随机出5(默认)个key,从里面淘汰掉最近最少使用的key。

可以通过maxmemory-samples参数修改采样数量:

例:maxmemory-samples 10

maxmenory-samples配置的越大,淘汰的结果越接近于严格的LRU算法

Redis为了实现近似LRU算法,给每个key增加了一个额外增加了一个24bit的字段,用来存储该key最后一次被访问的时间。

Redis3.0对近似LRU的优化

Redis3.0对近似LRU算法进行了一些优化。新算法会维护一个候选池(大小为16),池中的数据根据访问时间进行排序,第一次随机选取的key都会放入池中,随后每次随机选取的key只有在访问时间小于池中最小的时间才会放入池中,直到候选池被放满。当放满后,如果有新的key需要放入,则将池中最后访问时间最大(最近被访问)的移除。

当需要淘汰的时候,则直接从池中选取最近访问时间最小(最久没被访问)的key淘汰掉就行。 扫描二维码,关注公众号“猿必过”

回复 “面试题” 自行领取吧。

微信群交流讨论,请添加微信号:zyhui98,备注:面试题加群

本文由猿必过 YBG 发布 禁止未经授权转载,违者依法追究相关法律责任 如需授权可联系:zhuyunhui@yuanbiguo.com

分类:
后端
标签:
分类:
后端
标签:
收藏成功!
已添加到「」, 点击更改