HashMap 继承 AbstractMap 抽象类,实现了Map接口、Cloneable 克隆接口、以及Serializable序列化;
// 初始化容量,必须是2的次方
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量:2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认装载因子:0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 链表转换为红黑树的标识:大于等于8
static final int TREEIFY_THRESHOLD = 8;
// 红黑树转为链表的标识:小于等于6
static final int UNTREEIFY_THRESHOLD = 6;
// 当hash表的容量大于该值是,才允许链表转红黑树
static final int MIN_TREEIFY_CAPACITY = 64;
HashMap的元素类
static class Node<K,V> implements Map.Entry<K,V> {
// key的hash值
final int hash;
// 节点的key,类型和定义HashMap时的key相同
final K key;
// 节点的value,类型和定义HashMap时的value相同
V value;
// 该节点的下一节点
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
静态工具类
key的hash值计算规则:key的hash值与hash值右移16位进行异或运算
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
修改容量的长度,尽量保证设置的初始化容量接近于2的次方
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
字段
由Node节点组成链表之后,HashMap定义了一个Node数组,这个数组记录了每个链表的第一个节点,最终形成的数据结构如下:
transient Node<K,V>[] table;
缓存entrySet()
transient Set<Map.Entry<K,V>> entrySet;
容量
transient int size;
记录HashMap在结构上被修改的次数,即改变映射的数量
transient int modCount;
下一次扩容的大小值:(容量*负载系数)
int threshold;
hash表的加载因子
final float loadFactor;
公共操作
构造方法(初始化容量和装载因子):做了些检验
public HashMap(int initialCapacity, float loadFactor) {
// 初始化容量不能小于0
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// 设置的初始化容量的最大值超过2的30次方会调整为2^30
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 装载因子不能小于等于0,并且不能是其他类型
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
构造方法:(初始化容量)
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
无参构造
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
构造方法:(传入Map)
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
类似 putAll一样;
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
// 传入map容量大于0
if (s > 0) {
// 判断当前 node数组是否初始化,没有的话标记下一次扩容时的大小值
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
获取大小:
public int size() {
return size;
}
根据key获取节点:
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
判断key是否存在:
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
根据key的hash值和key获取:
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
put操作:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// table对应位置无节点,则创建新的Node节点放入对应位置
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// table对应位置有节点,如果hash值匹配,则替换
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// table对应位置有节点,如果table对应位置已经是一个TreeNode,不再是Node,也就说,table对应位置是TreeNode,表示已经从链表转换成了红黑树,则执行插入红黑树节点的逻辑
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// table对应位置有节点,且节点是Node(链表状态,不是红黑树),链表中节点数量大于TREEIFY_THRESHOLD,则考虑变为红黑树。实际上不一定真的立刻就变,table短的时候扩容一下也能解决问题,后面的代码会提到
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// HashMap中节点个数大于threshold,会进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 在resize()方法中,定义了oldCap参数,记录了原table的长度,定义了newCap参数,记录新table长度,newCap是oldCap长度的2倍(注释1),同时扩展点也乘2
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 注释2是循环原table,把原table中的每个链表中的每个元素放入新table
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
// e.next==null,指的是链表中只有一个元素,所以直接把e放入新table,其中的e.hash & (newCap - 1)就是计算e在新table中的位置,和JDK1.7中的indexFor()方法是一回事.扩容复制数组下标索引计算
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 正常情况下,计算节点在table中的下标的方法是:hash&(oldTable.length-1),扩容之后,table长度翻倍,计算table下标的方法是hash&(newTable.length-1),也就是hash&(oldTable.length*2-1),于是我们有了这样的结论:这新旧两次计算下标的结果,要不然就相同,要不然就是新下标等于旧下标加上旧数组的长度。
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}