类加载
对于任意一个类,都由加载它的类加载器和这个类本身一起确定其在 java 虚拟机中的唯一性。
类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构。
类的加载的最终产品是位于堆区中的Class对象,Class对象封装了类在方法区内的数据结构,并且向Java程序员提供了访问方法区内的数据结构的接口。
类加载器并不需要等到某个类被“首次主动使用”时再加载它,JVM规范允许类加载器在预料某个类将要被使用时就预先加载它,如果在预先加载的过程中遇到了.class文件缺失或存在错误,类加载器必须在程序首次主动使用该类时才报告错误(LinkageError错误)如果这个类一直没有被程序主动使用,那么类加载器就不会报告错误
加载.class文件的方式
- 从本地系统中直接加载
- 通过网络下载.class文件
- 从zip,jar等归档文件中加载.class文件
- 从专有数据库中提取.class文件
- 将Java源文件动态编译为.class文件
查看class文件
idea中使用jclasslib插件查看
vim -b xxx.class 以二进制打开文件
:%!xxd 以十六进制显示
hexdump -C xxx.class 十六进制展示
javap -c -v xxx.class 反汇编查看
类加载的过程
类加载的过程包括了加载、验证、准备、解析、初始化五个阶段。在这五个阶段中,加载、验证、准备和初始化这四个阶段发生的顺序是确定的,而解析阶段则不一定,它在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也成为动态绑定或晚期绑定)。另外注意这里的几个阶段是按顺序开始,而不是按顺序进行或完成,因为这些阶段通常都是互相交叉地混合进行的,通常在一个阶段执行的过程中调用或激活另一个阶段。
1. 加载
通过一个类的全限定名来获取其定义的二进制字节流,将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构,在Java堆中生成一个代表这个类的 java.lang.Class对象,作为对方法区中这些数据的访问入口。
相对于类加载的其他阶段而言,加载阶段(准确地说,是加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,因为开发人员既可以使用系统提供的类加载器来完成加载,也可以自定义自己的类加载器来完成加载。
加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,而且在Java堆中也创建一个 java.lang.Class类的对象
2. 验证
- 文件格式验证:验证字节流是否符合Class文件格式的规范;例如:是否以 0xCAFEBABE开头、主次版本号是否在当前虚拟机的处理范围之内、常量池中的常量是否有不被支持的类型。
- 元数据验证:对字节码描述的信息进行语义分析(注意:对比javac编译阶段的语义分析),以保证其描述的信息符合Java语言规范的要求;例如:这个类是否有父类,除了 java.lang.Object之外。
- 字节码验证:通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。
- 符号引用验证:确保解析动作能正确执行。
3. 准备
为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配
这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在Java堆中。
这里所设置的初始值通常情况下是数据类型默认的零值(如0、0L、null、false等),而不是被在Java代码中被显式地赋予的值,除非被static和final同时修饰。
4. 解析
虚拟机将常量池内的符号引用替换为直接引用的过程,解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行。
符号引用就是一组符号来描述目标,可以是任何字面量。直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。
5. 初始化
执行类初始化()方法,<clinit>()方法是编译器会按照其出现顺序,收集类变量的赋值语句、静态代码块,最终组成类初始化方法。
JVM初始化步骤
- 假如这个类还没有被加载和连接,则程序先加载并连接该类
- 假如该类的直接父类还没有被初始化,则先初始化其直接父类
- 假如类中有初始化语句,则系统依次执行这些初始化语句
类初始化时机
-
遇到new、getstatic、putstatic或invokestatic这四条字节码指令 注意,newarray指令触发的只是数组类型本身的初始化,而不会导致其相关类型的初始化,比如,new String[]只会直接触发String[]类的初始化,也就是触发对类[Ljava.lang.String的初始化,而直接不会触发String类的初始化 生成这四条指令的最常见的Java代码场景是: 使用new关键字实例化对象的时候; 读取或设置一个类的静态字段(被final修饰,已在编译器把结果放入常量池的静态字段除外)的时候; 调用一个类的静态方法的时候。
-
使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
-
当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
-
当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。
-
当使用jdk1.7动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getstatic,REF_putstatic,REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行初始化,则需要先出触发其初始化。
类加载方式
类加载有三种方式: 1、命令行启动应用时候由JVM初始化加载 2、通过Class.forName()方法动态加载 3、通过ClassLoader.loadClass()方法动态加载
Class.forName()和ClassLoader.loadClass()区别
- Class.forName():将类的.class文件加载到jvm中之外,还会对类进行解释,执行类中的static块;
- ClassLoader.loadClass():只干一件事情,就是将.class文件加载到jvm中,不会执行static中的内容,只有在newInstance才会去执行static块。
- Class.forName(name, initialize, loader)带参函数也可控制是否加载static块。并且只有调用了newInstance()方法才会调用构造函数,创建类的对象 。
package com.neo.classloader;
public class loaderTest {
public static void main(String[] args) throws ClassNotFoundException {
ClassLoader loader = HelloWorld.class.getClassLoader();
System.out.println(loader);
//使用ClassLoader.loadClass()来加载类,不会执行初始化块
loader.loadClass("Test2");
//使用Class.forName()来加载类,默认会执行初始化块
Class.forName("Test2");
//使用Class.forName()来加载类,并指定ClassLoader,初始化时不执行静态块
Class.forName("Test2", false, loader);
}
}
类加载器
类加载器结构
Java 中的类加载器大致可以分成两类,一类是系统提供的,另外一类则是由 Java 应用开发人员编写的。系统提供的类加载器主要有下面三个: • 引导类加载器(bootstrap class loader):它用来加载 Java 的核心库,是用原生代码(C++)来实现的,并不继承自 java.lang.ClassLoader。 • 扩展类加载器(extensions class loader):它用来加载 Java 的扩展库。Java 虚拟机的实现会提供一个扩展库目录。该类加载器在此目录里面查找并加载 Java 类。 • 系统类加载器(system class loader):它根据 Java 应用的类路径(CLASSPATH)来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoader()来获取它。
双亲委派模型
- 当 AppClassLoader加载一个class时,它首先不会自己去尝试加载这个类,而是把类加载请求委派给父类加载器ExtClassLoader去完成。
- 当 ExtClassLoader加载一个class时,它首先也不会自己去尝试加载这个类,而是把类加载请求委派给BootStrapClassLoader去完成。
- 如果 BootStrapClassLoader加载失败(例如在 $JAVA_HOME/jre/lib里未查找到该class),会使用 ExtClassLoader来尝试加载;
- 若ExtClassLoader也加载失败,则会使用 AppClassLoader来加载,如果 AppClassLoader也加载失败,则会报出异常 ClassNotFoundException。
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException{
synchronized (getClassLoadingLock(name)) {
// First, check if the class has already been loaded
Class<?> c = findLoadedClass(name);//先查看是不是已经加载
if (c == null) {
long t0 = System.nanoTime();
try {
if (parent != null) {//没有被加载的话,先交由父加载器
c = parent.loadClass(name, false);
} else {
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
// ClassNotFoundException thrown if class not found
// from the non-null parent class loader
}
if (c == null) {//父加载器未加载的话,则自己加载
// If still not found, then invoke findClass in order
// to find the class.
long t1 = System.nanoTime();
c = findClass(name);
// this is the defining class loader; record the stats
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
自定义类加载器
除了系统提供的类加载器以外,开发人员可以通过继承 java.lang.ClassLoader类的方式实现自己的类加载器,以满足一些特殊的需求。 如果需要自定义类加载器,可以继承 ClassLoader 类,重新 findClass 方法. java 类加载过程,使用了代理设计模式,在加载一个类时,会首先交给上层类加载器加载。上层没有,才会自己尝试加载。
public class MyClassLoader extends ClassLoader {
protected Class<?> findClass(String name) throws ClassNotFoundException {
File file = new File("D:/aliyun-test/target/classes/com/aliyun/domain/BaseEntity.class");
try {
byte[] bytes = getClassBytes(file);
// 二进制流转为 java.lang.Class
return this.defineClass(name, bytes, 0, bytes.length);
} catch (Exception e) {
e.printStackTrace();
}
return super.findClass(name);
}
private byte[] getClassBytes(File file) throws Exception {
FileInputStream fis = new FileInputStream(file);
FileChannel fc = fis.getChannel();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
WritableByteChannel wbc = Channels.newChannel(baos);
ByteBuffer by = ByteBuffer.allocate(1024);
while (true) {
int i = fc.read(by);
if (i == 0 || i == -1)
break;
by.flip();
wbc.write(by);
by.clear();
}
fis.close();
return baos.toByteArray();
}
public static void main(String[] args) throws Exception {
MyClassLoader mcl = new MyClassLoader();
Class<?> clazz = Class.forName("com.aliyun.domain.BaseEntity", true, mcl);
BaseEntity baseEntity = (BaseEntity) clazz.newInstance();
System.out.println(baseEntity);
System.out.println(baseEntity.getClass().getClassLoader());
}
线程上下文加载器
线程上下文类加载器是从线程的角度来看待类的加载,为每一个线程绑定一个类加载器,可以将类的加载从单纯的 双亲加载模型解放出来,进而实现特定的加载需求。
public Launcher() {
Launcher.ExtClassLoader var1;
try {
var1 = Launcher.ExtClassLoader.getExtClassLoader();
} catch (IOException var10) {
throw new InternalError("Could not create extension class loader", var10);
}
try {
this.loader = Launcher.AppClassLoader.getAppClassLoader(var1);
} catch (IOException var9) {
throw new InternalError("Could not create application class loader", var9);
}
//将AppClassLoader设置成当前线程的上下文加载器
Thread.currentThread().setContextClassLoader(this.loader);
//.......
}