一. CAS介绍
它是原子类的底层原理,同时也是乐观锁的原理
英文全称是 Compare-And-Swap,中文叫做“比较并交换”,它是一种思想、一种算法。 在多线程的情况下,各个代码的执行顺序是不能确定的,所以为了保证并发安全,我们可以使用互斥锁。而 CAS 的特点是避免使用互斥锁,当多个线程同时使用 CAS 更新同一个变量时,只有其中一个线程能够操作成功,而其他线程都会更新失败。不过和同步互斥锁不同的是,更新失败的线程并不会被阻塞,而是被告知这次由于竞争而导致的操作失败,但还可以再次尝试。 在并发编程领域中实现了无锁的线程安全。
CAS 有三个操作数:内存值 V、预期值 A、要修改的值 B。CAS 最核心的思路就是,仅当预期值 A 和当前的内存值 V 相同时,才将内存值修改为 B。
JDK 正是利用了这些 CAS 指令,可以实现并发的数据结构,比如 AtomicInteger 等原子类。
利用 CAS 实现的无锁算法,就像我们谈判的时候,用一种非常乐观的方式去协商,彼此之间很友好,这次没谈成,还可以重试。CAS 的思路和之前的互斥锁是两种完全不同的思路,如果是互斥锁,不存在协商机制,大家都会尝试抢占资源,如果抢到了,在操作完成前,会把这个资源牢牢的攥在自己的手里。当然,利用 CAS 和利用互斥锁,都可以保证并发安全,它们是实现同一目标的不同手段。
二. CAS 的应用场景
在并发容器、数据库以及原子类中都有很多和 CAS 相关的代码
并发容器
1.ConcurrentHashMap
putVal 方法 -> casTabAt 方法 -> U.compareAndSwapObject 方法
U 是 Unsafe 类型的,Unsafe 类包含 compareAndSwapInt、compareAndSwapLong、compareAndSwapObject 等和 CAS 密切相关的 native 层的方法,其底层正是利用 CPU 对 CAS 指令的支持实现的。
2.ConcurrentLinkedQueue
offer方法 -> casNext 方法
数据库
在我们的数据库中,也存在对乐观锁和 CAS 思想的应用。在更新数据时,我们可以利用 version 字段在数据库中实现乐观锁和 CAS 操作,而在获取和修改数据时都不需要加悲观锁。
具体思路如下:当我们获取完数据,并计算完毕,准备更新数据时,会检查现在的版本号与之前获取数据时的版本号是否一致,如果一致就说明在计算期间数据没有被更新过,可以直接更新本次数据;如果版本号不一致,则说明计算期间已经有其他线程修改过这个数据了,那就可以选择重新获取数据,重新计算,然后再次尝试更新数据。
原子类
AtomicInteger 的 getAndAdd() -> unsafe.getAndAddInt()
Unsafe 的 getAndAddInt 方法是通过循环 + CAS 的方式来实现的,在此过程中,它会通过 compareAndSwapInt 方法来尝试更新 value 的值,如果更新失败就重新获取,然后再次尝试更新,直到更新成功
三. CAS的缺点
1.ABA 问题
决定 CAS 是否进行 swap 的判断标准是“当前的值和预期的值是否一致”,如果一致,就认为在此期间这个数值没有发生过变动,这在大多数情况下是没有问题的。
但是在有的业务场景下,我们想确切知道从上一次看到这个值以来到现在,这个值是否发生过变化。例如,这个值假设从 A 变成了 B,再由 B 变回了 A,此时,我们不仅认为它发生了变化,并且会认为它变化了两次。
CAS 并不能检测出在此期间值是不是被修改过,它只能检查出现在的值和最初的值是不是一样。
我们在变量值自身之外,再添加一个版本号,那么这个值的变化路径就从 A→B→A 变成了 1A→2B→3A,这样一来,就可以通过对比版本号来判断值是否变化过,这比我们直接去对比两个值是否一致要更靠谱,所以通过这样的思路就可以解决 ABA 的问题了。
在 atomic 包中提供了 AtomicStampedReference 这个类,它是专门用来解决 ABA 问题的,解决思路正是利用版本号,AtomicStampedReference 会维护一种类似 <Object,int> 的数据结构,其中的 int 就是用于计数的,也就是版本号,它可以对这个对象和 int 版本号同时进行原子更新,从而也就解决了 ABA 问题。因为我们去判断它是否被修改过,不再是以值是否发生变化为标准,而是以版本号是否变化为标准,即使值一样,它们的版本号也是不同的。
2.自旋时间过长
由于单次 CAS 不一定能执行成功,所以 CAS 往往是配合着循环来实现的,有的时候甚至是死循环,不停地进行重试,直到线程竞争不激烈的时候,才能修改成功。
可是如果我们的应用场景本身就是高并发的场景,就有可能导致 CAS 一直都操作不成功,这样的话,循环时间就会越来越长。而且在此期间,CPU 资源也是一直在被消耗的,这会对性能产生很大的影响。所以这就要求我们,要根据实际情况来选择是否使用 CAS,在高并发的场景下,通常 CAS 的效率是不高的。
3.线程安全范围不能灵活控制
通常我们去执行 CAS 的时候,是针对某一个,而不是多个共享变量的,这个变量可能是 Integer 类型,也有可能是 Long 类型、对象类型等等,但是我们不能针对多个共享变量同时进行 CAS 操作,因为这多个变量之间是独立的,简单的把原子操作组合到一起,并不具备原子性。因此如果我们想对多个对象同时进行 CAS 操作并想保证线程安全的话,是比较困难的。
有一个解决方案,那就是利用一个新的类,来整合刚才这一组共享变量,这个新的类中的多个成员变量就是刚才的那多个共享变量,然后再利用 atomic 包中的 AtomicReference 来把这个新对象整体进行 CAS 操作,这样就可以保证线程安全。
相比之下,如果我们使用其他的线程安全技术,那么调整线程安全的范围就可能变得非常容易,比如我们用 synchronized 关键字时,如果想把更多的代码加锁,那么只需要把更多的代码放到同步代码块里面就可以了。