JS 请求调度器

1,226 阅读5分钟

前言:JS 天然支持并行请求,但与此同时会带来一些问题,比如会造成目标服务器压力过大,所以本文引入“请求调度器”来节制并发度。

TLDR; 直接跳转『抽象和复用』章节。

为了获取一批互不依赖的资源,通常从性能考虑可以用 Promise.all(arrayOfPromises)来并发执行。比如我们已有 100 个应用的 id,需求是聚合所有应用的 PV,我们通常会这么写:

const ids = [1001, 1002, 1003, 1004, 1005];
const urlPrefix = 'http://opensearch.example.com/api/apps';

// fetch 函数发送 HTTP 请求,返回 Promise
const appPromises = ids.map(id => `${urlPrefix}/${id}`).map(fetch);

Promise.all(appPromises)
  // 通过 reduce 做累加
  .then(apps => apps.reduce((initial, current) => initial + current.pv, 0))
  .catch((error) => console.log(error));

上面的代码在应用个数不多的情况下,可以运行正常。当应用个数达到成千上万时,对支持并发数不是很好的系统,你的「压测」会把第三放服务器搞挂,暂时无法响应请求:

<html>
<head><title>502 Bad Gateway</title></head>
<body bgcolor="white">
<center><h1>502 Bad Gateway</h1></center>
<hr><center>nginx/1.10.1</center>
</body>
</html>

如何解决呢?

一个很自然的想法是,既然不支持这么多的并发请求,那就分割成几大块,每块为一个 chunkchunk 内部的请求依然并发,但块的大小(chunkSize)限制在系统支持的最大并发数以内。前一个 chunk 结束后一个 chunk 才能继续执行,也就是说 chunk 内部的请求是并发的,但 chunk 之间是串行的。思路其实很简单,写起来却有一定难度。总结起来三个操作:分块、串行、聚合

难点在如何串行执行 Promise,Promise 仅提供了并行(Promise.all)功能,并没有提供串行功能。我们从简单的三个请求开始,看如何实现,启发式解决问题(heuristic)。

// task1, task2, task3 是三个返回 Promise 的工厂函数,模拟我们的异步请求
const task1 = () => new Promise((resolve) => {
  setTimeout(() => {
    resolve(1);
    console.log('task1 executed');
  }, 1000);
});

const task2 = () => new Promise((resolve) => {
  setTimeout(() => {
    resolve(2);
    console.log('task2 executed');
  }, 1000);
});

const task3 = () => new Promise((resolve) => {
  setTimeout(() => {
    resolve(3);
    console.log('task3 executed');
  }, 1000);
});

// 聚合结果
let result = 0;

const resultPromise = [task1, task2, task3].reduce((current, next) => 	  
  current.then((number) => {
    console.log('resolved with number', number); // task2, task3 的 Promise 将在这里被 resolve
    result += number;

    return next();
  }),
  
  Promise.resolve(0)) // 聚合初始值

  .then(function(last) {
    console.log('The last promise resolved with number', last); // task3 的 Promise 在这里被 resolve

    result += last;

    console.log('all executed with result', result);

    return Promise.resolve(result);
  });

运行结果如图 1:

fn 串行执行 Promise 结果.png

代码解析:我们想要的效果,直观展示其实是 fn1().then(() => fn2()).then(() => fn3())。上面代码能让一组 Promise 按顺序执行的关键之处就在 reduce 这个“引擎”在一步步推动 Promise 工厂函数的执行。

难点解决了,我们看看最终代码:

/**
 * 模拟 HTTP 请求
 * @param  {String} url 
 * @return {Promise}
 */
function fetch(url) {
  console.log(`Fetching ${url}`);
  return new Promise((resolve) => {
    setTimeout(() => resolve({ pv: Number(url.match(/\d+$/)) }), 2000);
  });
}

const urlPrefix = 'http://opensearch.example.com/api/apps';

const aggregator = {
  /**
   * 入口方法,开启定时任务
   * 
   * @return {Promise}
   */
  start() {
    return this.fetchAppIds()
      .then(ids => this.fetchAppsSerially(ids, 2))
      .then(apps => this.sumPv(apps))
      .catch(error => console.error(error));
  },
  
  /**
   * 获取所有应用的 ID
   *
   * @private
   * 
   * @return {Promise}
   */
  fetchAppIds() {
    return Promise.resolve([1001, 1002, 1003, 1004, 1005]);
  },

  promiseFactory(ids) {
    return () => Promise.all(ids.map(id => `${urlPrefix}/${id}`).map(fetch));
  },
  
  /**
   * 获取所有应用的详情
   * 
   * 一次并发请求 `concurrency` 个应用,称为一个 chunk
   * 前一个 `chunk` 并发完成后一个才继续,直至所有应用获取完毕
   *
   * @private
   *
   * @param  {[Number]} ids
   * @param  {Number} concurrency 一次并发的请求数量
   * @return {[Object]}         所有应用的信息
   */
  fetchAppsSerially(ids, concurrency = 100) {
    // 分块
    let chunkOfIds = ids.splice(0, concurrency);
    const tasks = [];
    
    while (chunkOfIds.length !== 0) {
      tasks.push(this.promiseFactory(chunkOfIds));
      chunkOfIds = ids.splice(0, concurrency);
    }
    
    // 按块顺序执行
    const result = [];
    return tasks.reduce((current, next) => current.then((chunkOfApps) => {
      console.info('Chunk of', chunkOfApps.length, 'concurrency requests has finished with result:', chunkOfApps, '\n\n');
      result.push(...chunkOfApps); // 拍扁数组
      return next();
    }), Promise.resolve([]))
    .then((lastchunkOfApps) => {
      console.info('Chunk of', lastchunkOfApps.length, 'concurrency requests has finished with result:', lastchunkOfApps, '\n\n');

      result.push(...lastchunkOfApps); // 再次拍扁它
      console.info('All chunks has been executed with result', result);
      return result;
    });
  },
  
  /**
   * 聚合所有应用的 PV
   * 
   * @private
   * 
   * @param  {[]} apps 
   * @return {[type]}      [description]
   */
  sumPv(apps) {
    const initial = { pv: 0 };

    return apps.reduce((accumulator, app) => ({ pv: accumulator.pv + app.pv }), initial);
  }
};

// 开始运行
aggregator.start().then(console.log);

运行结果如图 2:

串行执行 Promise 结果.png

抽象和复用

目的达到了,因具备通用性,下面开始抽象成一个模式以便复用。

串行

先模拟一个 http get 请求。

/**
 * mocked http get.
 * @param {string} url
 * @returns {{ url: string; delay: number; }}
 */
function httpGet(url) {
  const delay = Math.random() * 1000;

  console.info('GET', url);

  return new Promise((resolve) => {
    setTimeout(() => {
      resolve({
        url,
        delay,
        at: Date.now()
      })
    }, delay);
  })
}

串行执行一批请求。

const ids = [1, 2, 3, 4, 5, 6, 7];

// 批量请求函数,注意是 delay 执行的『函数』对了,否则会立即将请求发送出去,达不到串行的目的
const httpGetters = ids.map(id => 
  () => httpGet(`https://jsonplaceholder.typicode.com/posts/${id}`)
);

// 串行执行之
const tasks = await httpGetters.reduce((acc, cur) => {
  return acc.then(cur);
  
  // 简写,等价于
  // return acc.then(() => cur());
}, Promise.resolve());

tasks.then(() => {
  console.log('done');
});

注意观察控制台输出,应该串行输出以下内容:

GET https://jsonplaceholder.typicode.com/posts/1
GET https://jsonplaceholder.typicode.com/posts/2
GET https://jsonplaceholder.typicode.com/posts/3
GET https://jsonplaceholder.typicode.com/posts/4
GET https://jsonplaceholder.typicode.com/posts/5
GET https://jsonplaceholder.typicode.com/posts/6
GET https://jsonplaceholder.typicode.com/posts/7

分段串行,段中并行

重点来了。本文的请求调度器实现:

/**
 * Schedule promises.
 * @param {Array<(...arg: any[]) => Promise<any>>} factories 
 * @param {number} concurrency 
 */
function schedulePromises(factories, concurrency) {
  /**
   * chunk
   * @param {any[]} arr 
   * @param {number} size 
   * @returns {Array<any[]>}
   */
  const chunk = (arr, size = 1) => {
    return arr.reduce((acc, cur, idx) => {
      const modulo = idx % size;

      if (modulo === 0) {
        acc[acc.length] = [cur];
      } else {
        acc[acc.length - 1].push(cur);
      }

      return acc;
    }, [])
  };

  const chunks = chunk(factories, concurrency);

  let resps = [];

  return chunks.reduce(
    (acc, cur) => {
      return acc
        .then(() => {
          console.log('---');
          return Promise.all(cur.map(f => f()));
        })
        .then((intermediateResponses) => {
          resps.push(...intermediateResponses);

          return resps;
        })
    },

    Promise.resolve()
  );
}

测试下,执行调度器:

// 分段串行,段中并行
schedulePromises(httpGetters, 3).then((resps) => {
  console.log('resps:', resps);
});

控制台输出:

---
GET https://jsonplaceholder.typicode.com/posts/1
GET https://jsonplaceholder.typicode.com/posts/2
GET https://jsonplaceholder.typicode.com/posts/3
---
GET https://jsonplaceholder.typicode.com/posts/4
GET https://jsonplaceholder.typicode.com/posts/5
GET https://jsonplaceholder.typicode.com/posts/6
---
GET https://jsonplaceholder.typicode.com/posts/7

resps: [
  {
    "url": "https://jsonplaceholder.typicode.com/posts/1",
    "delay": 733.010980640727,
    "at": 1615131322163
  },
  {
    "url": "https://jsonplaceholder.typicode.com/posts/2",
    "delay": 594.5056229848931,
    "at": 1615131322024
  },
  {
    "url": "https://jsonplaceholder.typicode.com/posts/3",
    "delay": 738.8230109146299,
    "at": 1615131322168
  },
  {
    "url": "https://jsonplaceholder.typicode.com/posts/4",
    "delay": 525.4604386109747,
    "at": 1615131322698
  },
  {
    "url": "https://jsonplaceholder.typicode.com/posts/5",
    "delay": 29.086379722201183,
    "at": 1615131322201
  },
  {
    "url": "https://jsonplaceholder.typicode.com/posts/6",
    "delay": 592.2345027398272,
    "at": 1615131322765
  },
  {
    "url": "https://jsonplaceholder.typicode.com/posts/7",
    "delay": 513.0684467560949,
    "at": 1615131323284
  }
]

验证通过,确实是逐三个请求并发,等待并发请求完毕才继续下三个请求发起,且结果聚合也正确。

总结

  1. 如果并发请求的数量太大,可以考虑分块串行,块中请求并发。
  2. 问题看似复杂,不放先简化之,然后一步步推导出关键点,最后抽象,就能找到解决方案。
  3. 本文的精髓在于使用 reduce 作为串行推动的引擎,故掌握其对我们日常开发遇到的迷局破解可提供新思路,reduce 精通见上篇 你终于用 Reduce 了 🎉