ConcurrentHashMap

281 阅读5分钟

1. ConcurrentHashMap

  1. 相关属性
//最大容量 2的30次幂
private static final int MAXIMUM_CAPACITY = 1 << 30;
//默认初始容量
private static final int DEFAULT_CAPACITY = 16;
//数组的最大容量,主要是toArray()方法使用
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//并发数,jdk1.8不使用
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
//加载因子
private static final float LOAD_FACTOR = 0.75f;
//当链表中节点数大于8时转红黑树
static final int TREEIFY_THRESHOLD = 8;
//当红黑树节点数小于6时转成链表
static final int UNTREEIFY_THRESHOLD = 6;
//节点的hash属性为MOVED时,表示map正在扩容
static final int MOVED     = -1; 
//为-2, 代表此元素后接红黑树
static final int TREEBIN   = -2; 
static final int RESERVED  = -3; 
//主要用来计算Hash值的
static final int HASH_BITS = 0x7fffffff; 
// 这是扩容时的标记节点,主要在扩容时使用
ForwardingNode
//容器的计数器,没有竞争时可以表示容器中元素长度
private transient volatile long baseCount;
/**
 * -1 时表示正在初始化
 * tab.length*LOAD_FACTOR(因子 0.75) 时表示初始化完成
 **/
private transient volatile int sizeCtl;
  1. put方法,jdk1.8ConcurrentHashMap是基于cas和synchronized实现线程安全

    • putVal(K key, V value, boolean onlyIfAbsent)方法
    final V putVal(K key, V value, boolean onlyIfAbsent) {
    	//对key和value做校验
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {//死循环
        	// f是头节点
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)//如果数组没有初始化,则初始化数组
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//获取当前tab中i下标的node,其实是链表或红黑树头节点
            	//cas操作,如果当前tab在i下标上的头节点为null,创建新的node添加到i下标处,成功后跳出死循环,不成功继续下一轮循环
                if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))
                    break;                 
            }
            else if ((fh = f.hash) == MOVED)//帮助扩容
                tab = helpTransfer(tab, f);
            else {
            	//链表的处理
                V oldVal = null;
                //为f即头节点上锁
                synchronized (f) {
                	//再次校验最新获取的node是否与f相等,如果不相等再次进入循环,如果相等则进行下步执行
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                //先将e赋值给pred,然后e=e.next;一直循环到当前的链表的最后一个节点,然后将新的key value创建新的node,追加到当前链表的最后。
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }else if (f instanceof TreeBin) {//红黑树操作
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                //表示当前key value添加成功了
                if (binCount != 0) {
                	//判断是否需要转红黑树
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        //元素添加完成后,统计数量,并且校验是否需要扩容
        addCount(1L, binCount);
        return null;
    }
    
    • initTable() 方法
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
        	//表示已经在初始化,让出cpu资源,直到tab初始化完成后跳出循环
            if ((sc = sizeCtl) < 0)
            	//yield() 让出cpu资源后会再次竞争cpu资源
                Thread.yield(); 
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//cas操作,将-1赋值给SIZECTL
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        //这种计算方式其实等同于n*0.75(加载因子)
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }
    
    • casTabAt(Node<K,V>[] tab, int i,Node<K,V> c, Node<K,V> v)
    //使用cas在tab的下标为i处添加node,即为头节点
    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }
    
    • final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f)帮助扩容的方法,主要将多个线程分散在不同的数组下标区间
    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        //当满足如下条件才可以进行扩容
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            int rs = resizeStamp(tab.length);
            //循环,使用cas形成自旋锁
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                	//扩容
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }
    
    • private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab)扩容方法,主要采用了高低 位算法
    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {// 初始化新数组
            try {
               	//n << 1 新数组的长度为之前的2倍
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        //创建一个占位node,标记当前map正在扩容
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                    	//ln,低位节点,此节点不会在扩容时变换所在数组下标
                        //hn 高位节点,此节点在扩容时会向后移动,在数组的新下标为当前下标+扩容长度
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                        	// 这里面之所以这么算,是因为map扩容时采用了高低位算法,后续会讲解高低位算法
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            //lastRun默认是链表头节点,循环链表,是为了判断当前链表是否全部符合ln或hn
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            //如果当前链表的头节点不等于lastRun,说明此链表中存在需要移动的节点。重新构建节点
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            //将ln和hn放在新数组相应下标处
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            //将占位节点放到老数组i下标处
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        //红黑树处理
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }
    
    • 高低位算法

    int runBit = fh & n;头节点的hash值&原数组的长度,如果等于0则节点迁移时保持在数组原下标处否则需要迁移,迁移的新下标为当前下标+扩容长度。主要与获取节点所在数组下标的位置的算法有关即i = (n - 1) & hash 如图:图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化 那么这句话的意思是什么呢,通过计算可知,任意一个数&2的n次幂要么等于0要么等于2的n次幂。当等于0的数刚好通过 i = (n - 1)& hash计算出的下标刚好是扩容前的下标。不等于0的数再通过计算后得到的下标刚好是扩容前下标+扩容的长度。

    • private final void addCount(long x, int check),添加计数并校验是否需要扩容
    private final void addCount(long x, int check) {
    	//CounterCell计数器数组
       CounterCell[] as; long b, s;
       //cas操作,为baseCount赋值
       if ((as = counterCells) != null ||
           !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
           CounterCell a; long v; int m;
           boolean uncontended = true;
           //随机从as数组中获取CounterCell,并为CounterCell中value属性cas赋值
           if (as == null || (m = as.length - 1) < 0 ||
               (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
               !(uncontended =
                 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
               //后续再讲吧
               fullAddCount(x, uncontended);
               return;
           }
           if (check <= 1)
               return;
           //统计下数量
           s = sumCount();
       }
       //处理扩容
       if (check >= 0) {
           Node<K,V>[] tab, nt; int n, sc;
           //s >= (long)(sc = sizeCtl)表示需要扩容
           while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                  (n = tab.length) < MAXIMUM_CAPACITY) {
               int rs = resizeStamp(n);
               if (sc < 0) {
                   if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                       sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                       transferIndex <= 0)
                       break;
                   if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                       transfer(tab, nt);
               }
               else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                            (rs << RESIZE_STAMP_SHIFT) + 2))
                   transfer(tab, null);
               s = sumCount();
           }
       }
    }