一文读懂clickhouse集群监控

928 阅读6分钟

>更多精彩内容,请关注微信公众号:后端技术小屋

一文读懂clickhouse集群监控

常言道,兵马未至,粮草先行,在clickhouse上生产环境之前,我们就得制定好相关的监控方案,包括metric采集、报警策略、图形化报表。有了全面有效的监控,我们就仿佛拥有了千里眼顺风耳,对于线上任何风吹草动都能及时感知,在必要的情况下提前介入以避免线上故障。

业界常用的监控方案一般是基于prometheus + grafana生态。本文将介绍由clickhouse-exporter(node-exporter) + prometheus + grafana组成的监控方案。

clickhouse监控方案

以上为监控方案示意图 - clickhouse-server中有4个系统表会记录进程内部的指标,分别是system.metricssystem.asynchronous_metrics, system.eventssystem.parts - clickhuse-exporter是一个用于采集clickhouse指标的开源组件(github.com/ClickHouse/…. - node-exporter是一个用于采集硬件和操作系统相关指标的开源组件(github.com/prometheus/… - prometheus定时抓取clickhouse-exporter暴露的指标,并判断报警条件是否被触发,是则推送到alert manager - DBA可通过grafana看板实时查看当前clickhouse集群的运行状态 - DBA可通过alertmanager设置报警通知方式,如邮件、企业微信、电话等。

1 部署与配置

1.1 clickhouse-server

我们生产环境版本为20.3.8,按照官方文档部署即可。

1.2 clickhouse-exporter

clickhouse-exporter一般与clickhouse-server同机部署。

首先下载最新代码并编译(需预先安装Go)

git clone https://github.com/ClickHouse/clickhouse_exporter
cd clickhouse_exporter
go mod init
go mod vendor
go build 
ls ./clickhouse_exporter

然后启动

export CLICKHOUSE_USER="user"
export CLICKHOUSE_PASSWORD="password"
nohup ./-scrape_uri=http://localhost:port/ >nohup.log 2>&1 &

最后检查指标是否被正常采集:

> curl localhost:9116/metrics | head
# TYPE clickhouse_arena_alloc_bytes_total counter
clickhouse_arena_alloc_bytes_total 9.799096840192e+12
# HELP clickhouse_arena_alloc_chunks_total Number of ArenaAllocChunks total processed
# TYPE clickhouse_arena_alloc_chunks_total counter
clickhouse_arena_alloc_chunks_total 2.29782524e+08
# HELP clickhouse_background_move_pool_task Number of BackgroundMovePoolTask currently processed
# TYPE clickhouse_background_move_pool_task gauge
clickhouse_background_move_pool_task 0
# HELP clickhouse_background_pool_task Number of BackgroundPoolTask currently processed

1.3 node-exporter

node-exporter需与clickhouse-server同机部署

首先下载最新代码并编译

git clone https://github.com/prometheus/node_exporter
make build
ls ./node_exporter

然后启动

nohup ./node_exporter > nohup.log 2>&1 & 

最后检查指标是否被正常采集

> curl localhost:9100/metrics
# HELP go_gc_duration_seconds A summary of the GC invocation durations.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 6.3563e-05
go_gc_duration_seconds{quantile="0.25"} 7.4746e-05
go_gc_duration_seconds{quantile="0.5"} 9.0556e-05
go_gc_duration_seconds{quantile="0.75"} 0.000110677
go_gc_duration_seconds{quantile="1"} 0.004362325
go_gc_duration_seconds_sum 28.451282046
go_gc_duration_seconds_count 223479
...

1.4 prometheus

修改prometheus配置文件,添加alertmanager地址、clickhouse-exporter地址

prometheus.yml示例如下:

global:
  scrape_interval:     15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
  evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.

# Alertmanager configuration
alerting:
  alertmanagers:
  - static_configs:
    - targets:
      - alertmanager:9093

# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
  - ./rules/*.rules

# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
  # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
  - job_name: 'clickhouse'

    # metrics_path defaults to '/metrics'
    # scheme defaults to 'http'.
    static_configs:
    - targets: ['clickhouseexporter1:9116', 'clickhouseexporter2:9116', ...]

*.rules示例如下:

groups:
 - name: qps_too_high
   rules:
   - alert: clickhouse qps超出阈值
     expr: rate(clickhouse_query_total[1m]) > 100
     for: 2m
     labels:
      job: clickhouse-server
      severity: critical
      alertname: clickhouse qps超出阈值
     annotations:
      summary: "clickhouse qps超出阈值"
      description: "clickhouse qps超过阈值(100), qps: {{ $value }}"

启动promethus

nohup ./prometheus --config.file=/path/to/config --storage.tsdb.path=/path/to/storage --web.external-url=prometheus --web.enable-admin-api --web.enable-lifecycle --log.level=warn >nohup.log 2>&1 & 

浏览器输入http://prometheus_ip:9090检查prometheus状态

1.5 alert manager

首先修改配置文件

配置文件示例如下:

route:
  receiver: 'default'
  group_by: ['service','project']

receivers:
- name: "电话"
  webhook_configs:
  - url: <url>

- name: "企业微信"
  webhook_configs:
  - url: <url>

- name: "邮箱"
  webhook_configs:
  - url: <url>

然后启动

nohup ./alertmanager --config.file=/path/to/config --log.level=warn >nohup.log 2>&1 &

1.6 grafana

关于clickhouse的dashboard模板已经有很多,在这里推荐:grafana.com/grafana/das… 将它导入到新建的grafana dashboard之后,即可得到漂亮的clickhouse集群看板(可能需要微调)。

另外建议安装clickhouse datasource插件。有了这个插件便能在grafana中配置clickhouse数据源,并通过Clickhouse SQL配置图表,详细文档见:grafana.com/grafana/plu…

2 重要指标和监控

我们可以看到,不管是node-exporter还是clickhouse-exporter,它们的指标种类很多,大概有几百个。我们的策略是抓大放小,对于重要的指标才设置报警策略并创建看板。

下面列举一些个人觉得比较重要的指标

2.1 系统指标

系统指标由node-exporter采集

指标名指标含义报警策略策略含义
node_cpu_seconds_total机器累计cpu时间(单位s)100 * sum without (cpu) (rate(node_cpu_seconds_total{mode='user'}[5m])) / count without (cpu) (node_cpu_seconds_total{mode='user'}) > 80用户态cpu利用率大于80%则报警
node_filesystem_size_bytes/node_filesystem_avail_bytes机器上个文件分区容量/可用容量100 * (node_filesystem_size_bytes{mountpoint="/data"} - node_filesystem_avail_bytes{mountpoint="/data"}) / node_filesystem_size_bytes{mountpoint="/data"} > 80/data盘占用超过80%则报警
node_load55分钟load值node_load5 > 605分钟load值超过60则报警(可根据具体情况设置阈值)
node_disk_reads_completed_total累计读磁盘请求次数rate(node_disk_reads_completed_total[5m]) > 200read iops超过200则报警

2.2 clickhouse指标

指标名指标含义报警策略策略含义
clickhouse_exporter_scrape_failures_totalprometheus抓取exporter失败总次数increase(clickhouse_exporter_scrape_failures_total[5m]) > 10prometheus抓取export失败次数超过阈值则报警,说明此时ch服务器可能发生宕机
promhttp_metric_handler_requests_totalexporter请求clickhouse失败总次数increase(promhttp_metric_handler_requests_total{code="200"}[2m]) == 02分钟内查询clickhouse成功次数为零则报警,说明此时某个ch实例可能不可用
clickhouse_readonly_replicach实例中处于只读状态的表个数clickhouse_readonly_replica > 5ch中只读表超过5则报警,说明此时ch与zk连接可能发生异常
clickhouse_query_totalch已处理的query总数rate(clickhouse_query_total[1m]) > 30单实例qps超过30则报警
clickhouse_querych中正在运行的query个数clickhouse_query > 30单实例并发query数超过阈值则报警
clickhouse_tcp_connectionch的TCP连接数clickhouse_tcp_connection > XXX
clickhouse_http_connectionch的HTTP连接数clickhouse_http_connection > XXX
clickhouse_zoo_keeper_requestch中正在运行的zk请求数clickhouse_zoo_keeper_request > XXX
clickhouse_replicas_max_queue_sizech中zk副本同步队列的长度clickhouse_replicas_max_queue_size > 100zk副本同步队列长度超过阈值则报警,说明此时副本同步队列出现堆积

2.3 其他常用SQL

在clickhouse中,所有被执行的Query都会记录到system.query_log表中。因此我们可通过该表监控集群的查询情况。以下列举几种用于监控的常用SQL。为了更方便的查看,可添加到grafana看板中。

最近查询

SELECT 
    event_time, 
    user, 
    query_id AS query, 
    read_rows, 
    read_bytes, 
    result_rows, 
    result_bytes, 
    memory_usage, 
    exception
FROM clusterAllReplicas('cluster_name', system, query_log)
WHERE (event_date = today()) AND (event_time >= (now() - 60)) AND (is_initial_query = 1) AND (query NOT LIKE 'INSERT INTO%')
ORDER BY event_time DESC
LIMIT 100

慢查询

SELECT 
    event_time, 
    user, 
    query_id AS query, 
    read_rows, 
    read_bytes, 
    result_rows, 
    result_bytes, 
    memory_usage, 
    exception
FROM clusterAllReplicas('cluster_name', system, query_log)
WHERE (event_date = yesterday()) AND query_duration_ms > 30000 AND (is_initial_query = 1) AND (query NOT LIKE 'INSERT INTO%')
ORDER BY query_duration_ms desc
LIMIT 100

Top10大表

SELECT 
    database, 
    table, 
    sum(bytes_on_disk) AS bytes_on_disk
FROM clusterAllReplicas('cluster_name', system, parts)
WHERE active AND (database != 'system')
GROUP BY 
    database, 
    table
ORDER BY bytes_on_disk DESC
LIMIT 10

Top10查询用户

SELECT 
    user, 
    count(1) AS query_times, 
    sum(read_bytes) AS query_bytes, 
    sum(read_rows) AS query_rows
FROM clusterAllReplicas('cluster_name', system, query_log)
WHERE (event_date = yesterday()) AND (is_initial_query = 1) AND (query NOT LIKE 'INSERT INTO%')
GROUP BY user
ORDER BY query_times DESC
LIMIT 10

>更多精彩内容,请扫码关注微信公众号:后端技术小屋。如果觉得文章对你有帮助的话,请多多分享、转发、在看。
- STL源码分析--vector
- zookeeper client原理总结
- redis实现分布式锁
- 推荐几个好用的效率神器
- C/C++关键字之restrict
- 现代C++之右值语义
- Python乱码九问
- Linux Shell脚本攻略读书笔记