利用Python处理json数据-3

367 阅读3分钟

利用pandas处理json数据

下面介绍pandas库对json数据的处理:

  • read_json:从json文件中读取数据
  • to_json:将pandas中的数据写入到json文件中
  • json_normalize:对json数据进行规范化处理

https://geek-docs.com/pandas/pandas-read-write/pandas-reading-and-writing-json.html

read_json

首先看看官网read_json的参数:

pandas.read_json(
  path_or_buf=None,  # json文件路径
  orient=None,  # 重点参数,取值为:"split"、"records"、"index"、"columns"、"values"
  typ='frame',   # 要恢复的对象类型(系列或框架),默认’框架’.
  dtype=None, # boolean或dict,默认为True
  convert_axes=None, 
  convert_dates=True, 
  keep_default_dates=True, 
  numpy=False, 
  precise_float=False, 
  date_unit=None, 
  encoding=None, 
  lines=False,  # 布尔值,默认为False,每行读取该文件作为json对象
  chunksize=None,
  compression='infer', 
  nrows=None, 
  storage_options=None)

详细的参数解析可以参考文章:https://blog.csdn.net/qq_41562377/article/details/90203805

假设我们现在有一份json数据,如下图所示:

我们将上面的数据读取进来,由于数据是比较规范的,所以直接填写文件路径即可读取:

重点讲解下参数orient

1、oriden='split'

split’ : dict like {index -> [index]columns -> [columns], data -> [values]}

json文件的key的名字只能为index,cloumns,data这三个,另外多一个key都不行,少一个也不行。举例说明:

2、orient='records'

‘records’ : list like [{column -> value}, … , {column -> value}]

3、orient='index'

dict like {index -> {column -> value}}

4、orient='columns'

dict like {column -> {index -> value}}

转置之后就是上面orient='index'的结果

5、orient='values'

values’ : just the values array

to_json

to_json方法就是将DataFrame文件保存成json文件:

df.to_json("个人信息.json")   # 直接保存成json文件

如果按照上面的代码保存,中文是没有显示的:

当然我们可以通过json.load将json文件再次读取进行,显示中文,我们也可以直接在保存的时候显示中文:

df.to_json("个人信息1.json",force_ascii=False)   # 显示中文

json_normalize

https://www.jianshu.com/p/a84772b994a0

上面介绍的json数据的保存和读取中json数据都是列表形式的;但是json文件中的数据通常不一定全部是列表形式,那么我们需要将字典结构的文件转成列表形式,这个过程就叫做规范化。

pandas中的json_normalize()函数能够将字典或列表转成表格,使用之前先进行导入:

from pandas.io.json import json_normalize

通过官网和一个实际的例子来同时进行学习,首先看看官网的例子:

1、层级字典通过属性的形式显示数据:

2、如果加入max_level参数则会显示不同的效果:

若max_level=0,则嵌套的字典会当做整体,显示在数据框中

若max_level=1,则嵌套的字典会被拆解,里面的键会被单独出来:

3、读取层级嵌套中的部分内容:

4、读取全部内容

总结

json数据是工作中经常会遇到的一种数据格式,也是很重要的一种数据。

本文首先对json数据及格式进行了简介,重新认识json数据;其次,结合各种实际案例,将jsonPython的各种数据类型,尤其是字典类型进行了转化;最后,重要讲解了json数据的读取、写入和规范化的操作

需要读者重点掌握5个包或者库或者方法:

import json   # 数据类型转化
import demjson  # 编码解码
pd.read_json  #  读取
pd.to_json  # 写入
from pandas.io.json import json_normalize  # 规范化

希望通过文章的讲解能够帮助读者搞定json数据😃