Proxy、Reflect、Map、Set、Symbol(前端进阶1.6)

514 阅读36分钟

一、Proxy

Proxy 可以理解成,在目标对象之前架设一层“拦截”,外界对该对象的访问,都必须先通过这层拦截,因此提供了一种机制,可以对外界的访问进行过滤和改写。

Proxy 实际上重载(overload)了点运算符,即用自己的定义覆盖了语言的原始定义。

//ES6 原生提供 Proxy 构造函数,用来生成 Proxy 实例。
var proxy = new Proxy(target, handler);

1.1 Proxy 支持的拦截操作

  • get(target, propKey, receiver):拦截对象属性的读取,比如proxy.fooproxy['foo']
var person = {
  name: "张三"
};
var proxy = new Proxy(person, {
  get: function(target, property) {
    if (property in target) {
      return target[property];
    } else {
      throw new ReferenceError("Property \"" + property + "\" does not exist.");
    }
  }
});
proxy.name // "张三"
proxy.age // 抛出一个错误 ReferenceError: Property "age" does not exist.
  • set(target, propKey, value, receiver):拦截对象属性的设置,比如proxy.foo = vproxy['foo'] = v,返回一个布尔值。
let validator = {
  set: function(obj, prop, value) {
    if (prop === 'age') {
      if (!Number.isInteger(value)) {
        throw new TypeError('The age is not an integer');
      }
      if (value > 200) {
        throw new RangeError('The age seems invalid');
      }
    }
    // 对于满足条件的 age 属性以及其他属性,直接保存
    obj[prop] = value;
  }
};

let person = new Proxy({}, validator);
person.age = 100;
person.age // 100
person.age = 'young' // 报错 TypeError: The age is not an integer
person.age = 300 // 报错 RangeError: The age seems invalid
  • apply(target, object, args):拦截 Proxy 实例作为函数调用的操作
var twice = {
  apply (target, ctx, args) {
    return Reflect.apply(...arguments) * 2;
  }
};
function sum (left, right) {
  return left + right;
};
var proxy = new Proxy(sum, twice);
proxy(1, 2) // 6
proxy.call(null, 5, 6) // 22
proxy.apply(null, [7, 8]) // 30
  • has(target, propKey):拦截 propKey in proxy 的操作,返回一个布尔值。
var handler = {
  has (target, key) {
    if (key[0] === '_') {
      return false;
    }
    return key in target;
  }
};
var target = { _prop: 'foo', prop: 'foo' };
var proxy = new Proxy(target, handler);
console.log('_prop' in proxy) // false
  • construct(target, args):拦截 Proxy 实例作为构造函数调用的操作,比如new Proxy(...args)
var p = new Proxy(function () {}, {
  construct: function(target, args) {
    console.log('called: ' + args.join(', '));
    return { value: args[0] * 10 };
  }
});
(new p(1)).value
// "called: 1"
// 10
  • deleteProperty(target, propKey):拦截delete proxy[propKey]的操作,返回一个布尔值。
  • ownKeys(target):拦截Object.getOwnPropertyNames(proxy)、Object.getOwnPropertySymbols(proxy)、Object.keys(proxy)、for...in循环,返回一个数组。该方法返回目标对象所有自身的属性的属性名,而Object.keys()的返回结果仅包括目标对象自身的可遍历属性。
  • getOwnPropertyDescriptor(target, propKey):拦截Object.getOwnPropertyDescriptor(proxy, propKey),返回属性的描述对象。
  • defineProperty(target, propKey, propDesc):拦截Object.defineProperty(proxy, propKey, propDesc)、Object.defineProperties(proxy, propDescs),返回一个布尔值。
  • preventExtensions(target):拦截Object.preventExtensions(proxy),返回一个布尔值。
  • getPrototypeOf(target):拦截Object.getPrototypeOf(proxy),返回一个对象。
  • isExtensible(target):拦截Object.isExtensible(proxy),返回一个布尔值。
  • setPrototypeOf(target, proto):拦截Object.setPrototypeOf(proxy, proto),返回一个布尔值。如果目标对象是函数,那么还有两种额外操作可以拦截。

1.2 this指向问题

Proxy 代理的情况下,目标对象内部的 this 关键字会指向 Proxy 代理。

const target = {
  m: function () {
    console.log(this === proxy);
  }
};
const handler = {};
const proxy = new Proxy(target, handler);
target.m() // false
proxy.m()  // true
//this绑定原始对象,就可以解决这个问题。
const target = new Date('2015-01-01');
const handler = {
  get(target, prop) {
    if (prop === 'getDate') {
      return target.getDate.bind(target);
    }
    return Reflect.get(target, prop);
  }
};
const proxy = new Proxy(target, handler);
proxy.getDate() // 1

二、Reflect

Reflect 是ES6为操作对象而提供的新API,而这个API设计的目的只要有:

  • Object 对象的一些明显属于语言内部的方法(比如Object.defineProperty),放到 Reflect 对象上,从 Reflect 上能拿到语言内部的方法。

  • 修改某些 Object 方法的返回结果,让其变得更合理。如:Object.defineProperty(obj, name, desc)在无法定义属性的时候会报错,而Reflect.defineProperty(obj, name, desc)则会返回false

  • Object 操作都变成函数行为。某些 Object 操作是命令式,比如name in objdelete obj[name],而Reflect.has(obj, name)Reflect.deleteProperty(obj, name)让它们变成了函数行为。

  • Reflect 对象的方法与Proxy对象的方法一一对应,只要是Proxy对象的方法,就能在Reflect对象上找到对应的方法。也就是说,不管Proxy怎么修改默认行为,你总可以在Reflect上获取默认行为。

Proxy(target, {
  set: function(target, name, value, receiver) {
    var success = Reflect.set(target,name, value, receiver);
    if (success) {
      log('property ' + name + ' on ' + target + ' set to ' + value);
    }
    return success;
  }
});
var loggedObj = new Proxy(obj, {
  get(target, name) {
    console.log('get', target, name);
    return Reflect.get(target, name);
  },
  deleteProperty(target, name) {
    console.log('delete' + name);
    return Reflect.deleteProperty(target, name);
  },
  has(target, name) {
    console.log('has' + name);
    return Reflect.has(target, name);
  }
});

有了Reflect对象,很多操作会更易读

// 老写法
Function.prototype.apply.call(Math.floor, undefined, [1.75]) // 1

// 新写法
Reflect.apply(Math.floor, undefined, [1.75]) // 1

以下是Reflect对象的13个静态方法。

  • Reflect.apply(target, thisArg, args)
  • Reflect.construct(target, args)
  • Reflect.get(target, name, receiver)
  • Reflect.set(target, name, value, receiver)
  • Reflect.defineProperty(target, name, desc)
  • Reflect.deleteProperty(target, name)
  • Reflect.has(target, name)
  • Reflect.ownKeys(target)
  • Reflect.isExtensible(target)
  • Reflect.preventExtensions(target)
  • Reflect.getOwnPropertyDescriptor(target, name)
  • Reflect.getPrototypeOf(target)
  • Reflect.setPrototypeOf(target, prototype) 上面这些方法的作用大部分与Object对象的同名方法都是相同的,与Proxy对象的方法一一对应的。

Reflect.get(target, name, receiver)

Reflect.get方法查找并返回target对象的name属性,如果没有该属性,则返回undefined。

var myObject = {
  foo: 1,
  bar: 2,
  get baz() {
    return this.foo + this.bar;
  },
}

Reflect.get(myObject, 'foo') // 1
Reflect.get(myObject, 'bar') // 2
Reflect.get(myObject, 'baz') // 3

如果 name 属性部署了读取函数(getter),则读取函数的 this 绑定 receiver

var myObject = {
  foo: 1,
  bar: 2,
  get baz() {
    return this.foo + this.bar;
  },
};

var myReceiverObject = {
  foo: 4,
  bar: 4,
};

Reflect.get(myObject, 'baz', myReceiverObject) // 8

如果第一个参数不是对象,Reflect.get方法会报错。

Reflect.get(1, 'foo') // 报错
Reflect.get(false, 'foo') // 报错

Reflect.set(target, name, value, receiver)

Reflect.set方法设置target对象的name属性等于value

var myObject = {
  foo: 1,
  set bar(value) {
    return this.foo = value;
  },
}

myObject.foo // 1

Reflect.set(myObject, 'foo', 2);
myObject.foo // 2

Reflect.set(myObject, 'bar', 3)
myObject.foo // 3

如果 name 属性设置了赋值函数,则赋值函数的 this 绑定 receiver

var myObject = {
  foo: 4,
  set bar(value) {
    return this.foo = value;
  },
};

var myReceiverObject = {
  foo: 0,
};

Reflect.set(myObject, 'bar', 1, myReceiverObject);
myObject.foo // 4
myReceiverObject.foo // 1

注意,如果 Proxy 对象和 Reflect 对象联合使用,前者拦截赋值操作,后者完成赋值的默认行为,而且传入了 receiver,那么 Reflect.set 会触发Proxy.defineProperty拦截。

let p = {
  a: 'a'
};

let handler = {
  set(target, key, value, receiver) {
    console.log('set');
    Reflect.set(target, key, value, receiver)
  },
  defineProperty(target, key, attribute) {
    console.log('defineProperty');
    Reflect.defineProperty(target, key, attribute);
  }
};

let obj = new Proxy(p, handler);
obj.a = 'A';
// set
// defineProperty

上面代码中,Proxy.set拦截里面使用了Reflect.set,而且传入了 receiver,导致触发Proxy.defineProperty拦截。这是因为Proxy.setreceiver参数总是指向当前的 Proxy实例(即上例的obj),而Reflect.set一旦传入receiver,就会将属性赋值到receiver上面(即obj),导致触发defineProperty拦截。如果Reflect.set没有传入receiver,那么就不会触发defineProperty拦截。

let p = {
  a: 'a'
};

let handler = {
  set(target, key, value, receiver) {
    console.log('set');
    Reflect.set(target, key, value)
  },
  defineProperty(target, key, attribute) {
    console.log('defineProperty');
    Reflect.defineProperty(target, key, attribute);
  }
};

let obj = new Proxy(p, handler);
obj.a = 'A';
// set

如果第一个参数不是对象,Reflect.set会报错。

Reflect.set(1, 'foo', {}) // 报错
Reflect.set(false, 'foo', {}) // 报错

Reflect.has(obj, name)

Reflect.has方法对应name in obj里面的in运算符。

var myObject = {
  foo: 1,
};

// 旧写法
'foo' in myObject // true

// 新写法
Reflect.has(myObject, 'foo') // true

如果Reflect.has()方法的第一个参数不是对象,会报错。

Reflect.deleteProperty(obj, name)

Reflect.deleteProperty方法等同于delete obj[name],用于删除对象的属性。

const myObj = { foo: 'bar' };

// 旧写法
delete myObj.foo;

// 新写法
Reflect.deleteProperty(myObj, 'foo');

该方法返回一个布尔值。如果删除成功,或者被删除的属性不存在,返回 true;删除失败,被删除的属性依然存在,返回 false

如果Reflect.deleteProperty()方法的第一个参数不是对象,会报错。

Reflect.construct(target, args)

Reflect.construct方法等同于new target(...args),这提供了一种不使用 new,来调用构造函数的方法。

function Greeting(name) {
  this.name = name;
}

// new 的写法
const instance = new Greeting('张三');// Greeting {name: "张三"}

// Reflect.construct 的写法
const instance = Reflect.construct(Greeting, ['张三']);// Greeting {name: "张三"}

如果Reflect.construct()方法的第一个参数不是函数,会报错

Reflect.getPrototypeOf(obj)

Reflect.getPrototypeOf方法用于读取对象的__proto__属性,对应Object.getPrototypeOf(obj)

const myObj = new FancyThing();

// 旧写法
Object.getPrototypeOf(myObj) === FancyThing.prototype;

// 新写法
Reflect.getPrototypeOf(myObj) === FancyThing.prototype;

Reflect.getPrototypeOfObject.getPrototypeOf的一个区别是,如果参数不是对象,Object.getPrototypeOf会将这个参数转为对象,然后再运行,而Reflect.getPrototypeOf会报错。

Object.getPrototypeOf(1) // Number {[[PrimitiveValue]]: 0}
Reflect.getPrototypeOf(1) // 报错

Reflect.setPrototypeOf(obj, newProto)

Reflect.setPrototypeOf方法用于设置目标对象的原型(prototype),对应Object.setPrototypeOf(obj, newProto)方法。它返回一个布尔值,表示是否设置成功。

const myObj = {};

// 旧写法
Object.setPrototypeOf(myObj, Array.prototype);

// 新写法
Reflect.setPrototypeOf(myObj, Array.prototype);

myObj.length // 0

如果无法设置目标对象的原型(比如,目标对象禁止扩展),Reflect.setPrototypeOf方法返回 false

Reflect.setPrototypeOf({}, null) // true
Reflect.setPrototypeOf(Object.freeze({}), null) // false

如果第一个参数不是对象,Object.setPrototypeOf会返回第一个参数本身,而Reflect.setPrototypeOf会报错。

Object.setPrototypeOf(1, {}) // 1

Reflect.setPrototypeOf(1, {}) // TypeError: Reflect.setPrototypeOf called on non-object

如果第一个参数是undefinednullObject.setPrototypeOfReflect.setPrototypeOf都会报错。

Object.setPrototypeOf(null, {})
// TypeError: Object.setPrototypeOf called on null or undefined

Reflect.setPrototypeOf(null, {})
// TypeError: Reflect.setPrototypeOf called on non-object

Reflect.apply(func, thisArg, args)

Reflect.apply方法等同于Function.prototype.apply.call(func, thisArg, args),用于绑定this对象后执行给定函数。

一般来说,如果要绑定一个函数的this对象,可以这样写fn.apply(obj, args),但是如果函数定义了自己的apply方法,就只能写成Function.prototype.apply.call(fn, obj, args),采用Reflect对象可以简化这种操作。

const ages = [11, 33, 12, 54, 18, 96];

// 旧写法
const youngest = Math.min.apply(Math, ages);// 11
const oldest = Math.max.apply(Math, ages);// 96
const type = Object.prototype.toString.call(youngest); // "[object Number]"


// 新写法
const youngest = Reflect.apply(Math.min, Math, ages);// 11
const oldest = Reflect.apply(Math.max, Math, ages);// 96
const type = Reflect.apply(Object.prototype.toString, youngest, []);// "[object Number]"

Reflect.defineProperty(target, propertyKey, attributes)

Reflect.defineProperty方法基本等同于Object.defineProperty,用来为对象定义属性。未来,后者会被逐渐废除,请从现在开始就使用Reflect.defineProperty代替它。

function MyDate() {
  /*…*/
}

// 旧写法
Object.defineProperty(MyDate, 'now', {
  value: () => Date.now()
});

// 新写法
Reflect.defineProperty(MyDate, 'now', {
  value: () => Date.now()
});

如果Reflect.defineProperty的第一个参数不是对象,就会抛出错误,比如Reflect.defineProperty(1, 'foo')

这个方法可以与Proxy.defineProperty配合使用。

const p = new Proxy({}, {
  defineProperty(target, prop, descriptor) {
    console.log(descriptor);
    return Reflect.defineProperty(target, prop, descriptor);
  }
});

p.foo = 'bar';
// {value: "bar", writable: true, enumerable: true, configurable: true}

p.foo // "bar"

上面代码中,Proxy.defineProperty对属性赋值设置了拦截,然后使用Reflect.defineProperty完成了赋值。

Reflect.getOwnPropertyDescriptor(target, propertyKey)

Reflect.getOwnPropertyDescriptor基本等同于Object.getOwnPropertyDescriptor,用于得到指定属性的描述对象,将来会替代掉后者。

var myObject = {};
Object.defineProperty(myObject, 'hidden', {
  value: true,
  enumerable: false,
});

// 旧写法
var theDescriptor = Object.getOwnPropertyDescriptor(myObject, 'hidden');
//{value: true, writable: false, enumerable: false, configurable: false}

// 新写法
var theDescriptor = Reflect.getOwnPropertyDescriptor(myObject, 'hidden');
//{value: true, writable: false, enumerable: false, configurable: false}

Reflect.getOwnPropertyDescriptorObject.getOwnPropertyDescriptor的一个区别是,如果第一个参数不是对象,Object.getOwnPropertyDescriptor(1, 'foo')不报错,返回undefined,而Reflect.getOwnPropertyDescriptor(1, 'foo')会抛出错误,表示参数非法。

Reflect.isExtensible (target)

Reflect.isExtensible方法对应Object.isExtensible,返回一个布尔值,表示当前对象是否可扩展。

const myObject = {};

// 旧写法
Object.isExtensible(myObject) // true

// 新写法
Reflect.isExtensible(myObject) // true

如果参数不是对象,Object.isExtensible会返回false,因为非对象本来就是不可扩展的,而Reflect.isExtensible会报错。

Object.isExtensible(1) // false
Reflect.isExtensible(1) // 报错

Reflect.preventExtensions(target)

Reflect.preventExtensions对应Object.preventExtensions方法,用于让一个对象变为不可扩展。它返回一个布尔值,表示是否操作成功。

var myObject = {};

// 旧写法
Object.preventExtensions(myObject) // Object {}

// 新写法
Reflect.preventExtensions(myObject) // true

如果参数不是对象,Object.preventExtensionsES5 环境报错,在 ES6 环境返回传入的参数,而Reflect.preventExtensions会报错。

// ES5 环境
Object.preventExtensions(1) // 报错

// ES6 环境
Object.preventExtensions(1) // 1

// 新写法
Reflect.preventExtensions(1) // 报错

Reflect.ownKeys (target)

Reflect.ownKeys方法用于返回对象的所有属性,基本等同于Object.getOwnPropertyNamesObject.getOwnPropertySymbols之和。

var myObject = {
  foo: 1,
  bar: 2,
  [Symbol.for('baz')]: 3,
  [Symbol.for('bing')]: 4,
};

// 旧写法
Object.getOwnPropertyNames(myObject)
// ['foo', 'bar']

Object.getOwnPropertySymbols(myObject)
//[Symbol(baz), Symbol(bing)]

// 新写法
Reflect.ownKeys(myObject)
// ['foo', 'bar', Symbol(baz), Symbol(bing)]

如果Reflect.ownKeys()方法的第一个参数不是对象,会报错。

实例:使用 Proxy 实现观察者模式

观察者模式(Observer mode)指的是函数自动观察数据对象,一旦对象有变化,函数就会自动执行。

const person = observable({
  name: '张三',
  age: 20
});

function print() {
  console.log(`${person.name}, ${person.age}`)
}

observe(print);
person.name = '李四';
// 输出
// 李四, 20

上面代码中,数据对象person是观察目标,函数print是观察者。一旦数据对象发生变化,print就会自动执行。

下面,使用 Proxy 写一个观察者模式的最简单实现,即实现observableobserve这两个函数。思路是observable函数返回一个原始对象的 Proxy 代理,拦截赋值操作,触发充当观察者的各个函数。

const queuedObservers = new Set();

const observe = fn => queuedObservers.add(fn);
const observable = obj => new Proxy(obj, {set});

function set(target, key, value, receiver) {
  const result = Reflect.set(target, key, value, receiver);
  queuedObservers.forEach(observer => observer());
  return result;
}

上面代码中,先定义了一个Set集合,所有观察者函数都放进这个集合。然后,observable函数返回原始对象的代理,拦截赋值操作。拦截函数set之中,会自动执行所有观察者。

三、Map

含义和基本用法

JavaScript 的对象(Object),本质上是键值对的集合(Hash 结构),但是传统上只能用字符串当作键。这给它的使用带来了很大的限制。

const data = {};
const element = document.getElementById('myDiv');

data[element] = 'metadata';
data['[object HTMLDivElement]'] // "metadata"

上面代码原意是将一个 DOM 节点作为对象data的键,但是由于对象只接受字符串作为键名,所以element被自动转为字符串[object HTMLDivElement]

为了解决这个问题,ES6 提供了 Map 数据结构。它类似于对象,也是键值对的集合,但是“键”的范围不限于字符串,各种类型的值(包括对象)都可以当作键。也就是说,Object 结构提供了“字符串—值”的对应,Map 结构提供了“值—值”的对应,是一种更完善的 Hash 结构实现。如果你需要“键值对”的数据结构,MapObject 更合适。

const m = new Map();
const o = {p: 'Hello World'};

m.set(o, 'content')
m.get(o) // "content"

m.has(o) // true
m.delete(o) // true
m.has(o) // false

上面代码使用 Map 结构的set方法,将对象o当作m的一个键,然后又使用get方法读取这个键,接着使用delete方法删除了这个键。

上面的例子展示了如何向 Map 添加成员。作为构造函数,Map 也可以接受一个数组作为参数。该数组的成员是一个个表示键值对的数组。

const map = new Map([
  ['name', '张三'],
  ['title', 'Author']
]);

map.size // 2
map.has('name') // true
map.get('name') // "张三"
map.has('title') // true
map.get('title') // "Author"

上面代码在新建 Map 实例时,就指定了两个键name和title。

Map构造函数接受数组作为参数,实际上执行的是下面的算法。

const items = [
  ['name', '张三'],
  ['title', 'Author']
];

const map = new Map();

items.forEach(
  ([key, value]) => map.set(key, value)
);

事实上,不仅仅是数组,任何具有 Iterator 接口、且每个成员都是一个双元素的数组的数据结构都可以当作Map构造函数的参数。这就是说,SetMap都可以用来生成新的 Map

const set = new Set([
  ['foo', 1],
  ['bar', 2]
]);
const m1 = new Map(set);
m1.get('foo') // 1

const m2 = new Map([['baz', 3]]);
const m3 = new Map(m2);
m3.get('baz') // 3

上面代码中,我们分别使用 Set 对象和 Map 对象,当作Map构造函数的参数,结果都生成了新的 Map 对象。

如果对同一个键多次赋值,后面的值将覆盖前面的值。

const map = new Map();

map
.set(1, 'aaa')
.set(1, 'bbb');

map.get(1) // "bbb"

上面代码对键1连续赋值两次,后一次的值覆盖前一次的值。

如果读取一个未知的键,则返回undefined。 new Map().get('asfddfsasadf') // undefined 注意,只有对同一个对象的引用,Map 结构才将其视为同一个键。这一点要非常小心。

const map = new Map();

map.set(['a'], 555); map.get(['a']) // undefined 上面代码的set和get方法,表面是针对同一个键,但实际上这是两个不同的数组实例,内存地址是不一样的,因此get方法无法读取该键,返回undefined。

同理,同样的值的两个实例,在 Map 结构中被视为两个键。

const map = new Map();

const k1 = ['a'];
const k2 = ['a'];

map
.set(k1, 111)
.set(k2, 222);

map.get(k1) // 111
map.get(k2) // 222

上面代码中,变量k1k2的值是一样的,但是它们在 Map 结构中被视为两个键。

由上可知,Map 的键实际上是跟内存地址绑定的,只要内存地址不一样,就视为两个键。这就解决了同名属性碰撞(clash)的问题,我们扩展别人的库的时候,如果使用对象作为键名,就不用担心自己的属性与原作者的属性同名。

如果 Map 的键是一个简单类型的值(数字、字符串、布尔值),则只要两个值严格相等,Map 将其视为一个键,比如 0-0 就是一个键,布尔值 true 和字符串 true 则是两个不同的键。另外,undefinednull也是两个不同的键。虽然NaN不严格相等于自身,但 Map 将其视为同一个键。

let map = new Map();

map.set(-0, 123);
map.get(+0) // 123

map.set(true, 1);
map.set('true', 2);
map.get(true) // 1

map.set(undefined, 3);
map.set(null, 4);
map.get(undefined) // 3

map.set(NaN, 123);
map.get(NaN) // 123

实例的属性和操作方法

Map 结构的实例有以下属性和操作方法。

(1)size 属性

size属性返回 Map 结构的成员总数。

const map = new Map();
map.set('foo', true);
map.set('bar', false);

map.size // 2

(2)Map.prototype.set(key, value)

set方法设置键名key对应的键值为value,然后返回整个 Map 结构。如果key已经有值,则键值会被更新,否则就新生成该键。

const m = new Map();

m.set('edition', 6)        // 键是字符串
m.set(262, 'standard')     // 键是数值
m.set(undefined, 'nah')    // 键是 undefined

set方法返回的是当前的Map对象,因此可以采用链式写法。

let map = new Map()
  .set(1, 'a')
  .set(2, 'b')
  .set(3, 'c');

(3)Map.prototype.get(key)

get方法读取key对应的键值,如果找不到key,返回undefined

const m = new Map();

const hello = function() {console.log('hello');};
m.set(hello, 'Hello ES6!') // 键是函数

m.get(hello)  // Hello ES6!

(4)Map.prototype.has(key)

has方法返回一个布尔值,表示某个键是否在当前 Map 对象之中。

const m = new Map();

m.set('edition', 6);
m.set(262, 'standard');
m.set(undefined, 'nah');

m.has('edition')     // true
m.has('years')       // false
m.has(262)           // true
m.has(undefined)     // true

(5)Map.prototype.delete(key)

delete方法删除某个键,返回true。如果删除失败,返回false

const m = new Map();
m.set(undefined, 'nah');
m.has(undefined)     // true

m.delete(undefined)
m.has(undefined)       // false

(6)Map.prototype.clear()

clear方法清除所有成员,没有返回值。

let map = new Map();
map.set('foo', true);
map.set('bar', false);

map.size // 2
map.clear()
map.size // 0

遍历方法

Map 结构原生提供三个遍历器生成函数和一个遍历方法。

  • Map.prototype.keys():返回键名的遍历器。
  • Map.prototype.values():返回键值的遍历器。
  • Map.prototype.entries():返回所有成员的遍历器。
  • Map.prototype.forEach():遍历 Map 的所有成员。 需要特别注意的是,Map 的遍历顺序就是插入顺序。
const map = new Map([
  ['F', 'no'],
  ['T',  'yes'],
]);

for (let key of map.keys()) {
  console.log(key);
}
// "F"
// "T"

for (let value of map.values()) {
  console.log(value);
}
// "no"
// "yes"

for (let item of map.entries()) {
  console.log(item[0], item[1]);
}
// "F" "no"
// "T" "yes"

// 或者
for (let [key, value] of map.entries()) {
  console.log(key, value);
}
// "F" "no"
// "T" "yes"

// 等同于使用map.entries()
for (let [key, value] of map) {
  console.log(key, value);
}
// "F" "no"
// "T" "yes"

上面代码最后的那个例子,表示 Map 结构的默认遍历器接口(Symbol.iterator属性),就是entries方法。

map[Symbol.iterator] === map.entries // true

Map 结构转为数组结构,比较快速的方法是使用扩展运算符(...)。

const map = new Map([  [1, 'one'],
  [2, 'two'],
  [3, 'three'],
]);

[...map.keys()]
// [1, 2, 3]

[...map.values()]
// ['one', 'two', 'three']

[...map.entries()]
// [[1,'one'], [2, 'two'], [3, 'three']]

[...map]
// [[1,'one'], [2, 'two'], [3, 'three']]

结合数组的map方法、filter方法,可以实现 Map 的遍历和过滤(Map 本身没有mapfilter方法)。

const map0 = new Map()
  .set(1, 'a')
  .set(2, 'b')
  .set(3, 'c');

const map1 = new Map(
  [...map0].filter(([k, v]) => k < 3)
);
// 产生 Map 结构 {1 => 'a', 2 => 'b'}

const map2 = new Map(
  [...map0].map(([k, v]) => [k * 2, '_' + v])
    );
// 产生 Map 结构 {2 => '_a', 4 => '_b', 6 => '_c'}

此外,Map 还有一个forEach方法,与数组的forEach方法类似,也可以实现遍历。

const map = new Map()
  .set(1, 'a')
  .set(2, 'b')
  .set(3, 'c');

map.forEach(function(value, key, map) {
  console.log("Key: %s, Value: %s", key, value);
});
//Key: 1, Value: a
//Key: 2, Value: b
//Key: 3, Value: c

forEach方法还可以接受第二个参数,用来绑定this

const map = new Map()
  .set(1, 'a')
  .set(2, 'b')
  .set(3, 'c');

const reporter = {
  report: function(key, value) {
    console.log("Key: %s, Value: %s", key, value);
  }
};

map.forEach(function(value, key, map) {
  this.report(key, value);
}, reporter);
//Key: 1, Value: a
//Key: 2, Value: b
//Key: 3, Value: c

上面代码中,forEach方法的回调函数的this,就指向reporter

与其他数据结构的互相转换

(1)Map 转为数组

前面已经提过,Map 转为数组最方便的方法,就是使用扩展运算符(...)。

const myMap = new Map()
  .set(true, 7)
  .set({foo: 3}, ['abc']);
[...myMap]
// [ [ true, 7 ], [ { foo: 3 }, [ 'abc' ] ] ]

(2)数组 转为 Map

将数组传入 Map 构造函数,就可以转为 Map

new Map([
  [true, 7],
  [{foo: 3}, ['abc']]
])
// Map {
//   true => 7,
//   Object {foo: 3} => ['abc']
// }

(3)Map 转为对象

如果所有 Map 的键都是字符串,它可以无损地转为对象。

function strMapToObj(strMap) {
  let obj = Object.create(null);
  for (let [k,v] of strMap) {
    obj[k] = v;
  }
  return obj;
}

const myMap = new Map()
  .set('yes', true)
  .set('no', false);
strMapToObj(myMap)
// { yes: true, no: false }

如果有非字符串的键名,那么这个键名会被转成字符串,再作为对象的键名。

(4)对象转为 Map

对象转为 Map 可以通过Object.entries()

let obj = {"a":1, "b":2};
let map = new Map(Object.entries(obj));

此外,也可以自己实现一个转换函数。

function objToStrMap(obj) {
  let strMap = new Map();
  for (let k of Object.keys(obj)) {
    strMap.set(k, obj[k]);
  }
  return strMap;
}

objToStrMap({yes: true, no: false})
// Map {"yes" => true, "no" => false}

(5)Map 转为 JSON

Map 转为 JSON 要区分两种情况。一种情况是,Map 的键名都是字符串,这时可以选择转为对象 JSON

function strMapToJson(strMap) {
  return JSON.stringify(strMapToObj(strMap));
}

let myMap = new Map().set('yes', true).set('no', false);
strMapToJson(myMap)
// '{"yes":true,"no":false}'

另一种情况是,Map 的键名有非字符串,这时可以选择转为数组 JSON

function mapToArrayJson(map) {
  return JSON.stringify([...map]);
}

let myMap = new Map().set(true, 7).set({foo: 3}, ['abc']);
mapToArrayJson(myMap)
// '[[true,7],[{"foo":3},["abc"]]]'

(6)JSON 转为 Map

JSON 转为 Map,正常情况下,所有键名都是字符串。

function jsonToStrMap(jsonStr) {
  return objToStrMap(JSON.parse(jsonStr));
}

jsonToStrMap('{"yes": true, "no": false}')
// Map {'yes' => true, 'no' => false}

但是,有一种特殊情况,整个 JSON 就是一个数组,且每个数组成员本身,又是一个有两个成员的数组。这时,它可以一一对应地转为 Map。这往往是 Map 转为数组 JSON 的逆操作。

function jsonToMap(jsonStr) {
  return new Map(JSON.parse(jsonStr));
}

jsonToMap('[[true,7],[{"foo":3},["abc"]]]')
// Map {true => 7, Object {foo: 3} => ['abc']}

WeakMap

含义

WeakMap结构与Map结构类似,也是用于生成键值对的集合。

// WeakMap 可以使用 set 方法添加成员
const wm1 = new WeakMap();
const key = {foo: 1};
wm1.set(key, 2);
wm1.get(key) // 2

// WeakMap 也可以接受一个数组,
// 作为构造函数的参数
const k1 = [1, 2, 3];
const k2 = [4, 5, 6];
const wm2 = new WeakMap([[k1, 'foo'], [k2, 'bar']]);
wm2.get(k2) // "bar"

WeakMapMap的区别有两点。

首先,WeakMap只接受对象作为键名(null除外),不接受其他类型的值作为键名。

const map = new WeakMap();
map.set(1, 2)
// TypeError: 1 is not an object!
map.set(Symbol(), 2)
// TypeError: Invalid value used as weak map key
map.set(null, 2)
// TypeError: Invalid value used as weak map key

上面代码中,如果将数值1Symbol值作为 WeakMap 的键名,都会报错。

其次,WeakMap的键名所指向的对象,不计入垃圾回收机制。

WeakMap的设计目的在于,有时我们想在某个对象上面存放一些数据,但是这会形成对于这个对象的引用。请看下面的例子。

const e1 = document.getElementById('foo');
const e2 = document.getElementById('bar');
const arr = [
  [e1, 'foo 元素'],
  [e2, 'bar 元素'],
];

上面代码中,e1e2是两个对象,我们通过arr数组对这两个对象添加一些文字说明。这就形成了arre1e2的引用。

一旦不再需要这两个对象,我们就必须手动删除这个引用,否则垃圾回收机制就不会释放e1e2占用的内存。

// 不需要 e1 和 e2 的时候
// 必须手动删除引用
arr [0] = null;
arr [1] = null;

上面这样的写法显然很不方便。一旦忘了写,就会造成内存泄露。

WeakMap 就是为了解决这个问题而诞生的,它的键名所引用的对象都是弱引用,即垃圾回收机制不将该引用考虑在内。因此,只要所引用的对象的其他引用都被清除,垃圾回收机制就会释放该对象所占用的内存。也就是说,一旦不再需要,WeakMap 里面的键名对象和所对应的键值对会自动消失,不用手动删除引用。

基本上,如果你要往对象上添加数据,又不想干扰垃圾回收机制,就可以使用 WeakMap。一个典型应用场景是,在网页的 DOM 元素上添加数据,就可以使用WeakMap结构。当该 DOM 元素被清除,其所对应的WeakMap记录就会自动被移除。

const wm = new WeakMap();

const element = document.getElementById('example');

wm.set(element, 'some information');
wm.get(element) // "some information"

上面代码中,先新建一个 Weakmap 实例。然后,将一个 DOM 节点作为键名存入该实例,并将一些附加信息作为键值,一起存放在 WeakMap 里面。这时,WeakMap 里面对element的引用就是弱引用,不会被计入垃圾回收机制。

也就是说,上面的 DOM 节点对象的引用计数是1,而不是2。这时,一旦消除对该节点的引用,它占用的内存就会被垃圾回收机制释放。Weakmap 保存的这个键值对,也会自动消失。

总之,WeakMap的专用场合就是,它的键所对应的对象,可能会在将来消失。WeakMap结构有助于防止内存泄漏。

注意,WeakMap 弱引用的只是键名,而不是键值。键值依然是正常引用。

const wm = new WeakMap();
let key = {};
let obj = {foo: 1};

wm.set(key, obj);
obj = null;
wm.get(key)
// Object {foo: 1}

上面代码中,键值obj是正常引用。所以,即使在 WeakMap 外部消除了obj的引用,WeakMap 内部的引用依然存在。

WeakMap 的语法

WeakMapMap 在 API 上的区别主要是两个,一是没有遍历操作(即没有keys()values()entries()方法),也没有size属性。因为没有办法列出所有键名,某个键名是否存在完全不可预测,跟垃圾回收机制是否运行相关。这一刻可以取到键名,下一刻垃圾回收机制突然运行了,这个键名就没了,为了防止出现不确定性,就统一规定不能取到键名。二是无法清空,即不支持clear方法。因此,WeakMap只有四个方法可用:get()set()has()delete()

const wm = new WeakMap();

// size、forEach、clear 方法都不存在
wm.size // undefined
wm.forEach // undefined
wm.clear // undefined

四、Set

基本用法

ES6 提供了新的数据结构 Set。它类似于数组,但是成员的值都是唯一的,没有重复的值。

Set 本身是一个构造函数,用来生成 Set 数据结构。

const s = new Set();

[2, 3, 5, 4, 5, 2, 2].forEach(x => s.add(x));

for (let i of s) {
  console.log(i);
}
// 2 3 5 4

上面代码通过add()方法向 Set 结构加入成员,结果表明 Set 结构不会添加重复的值。

Set函数可以接受一个数组(或者具有 iterable 接口的其他数据结构)作为参数,用来初始化。

// 例一
const set = new Set([1, 2, 3, 4, 4]);
[...set]
// [1, 2, 3, 4]

// 例二
const items = new Set([1, 2, 3, 4, 5, 5, 5, 5]);
items.size // 5

// 例三
const set = new Set(document.querySelectorAll('div'));
set.size // 56

// 类似于
const set = new Set();
document
 .querySelectorAll('div')
 .forEach(div => set.add(div));
set.size // 56

上面代码中,例一和例二都是Set函数接受数组作为参数,例三是接受类似数组的对象作为参数。

上面代码也展示了一种去除数组重复成员的方法。

// 去除数组的重复成员
[...new Set(array)]

上面的方法也可以用于,去除字符串里面的重复字符

[...new Set('ababbc')].join('') // "abc"

Set 加入值的时候,不会发生类型转换,所以5"5"是两个不同的值。Set 内部判断两个值是否不同,使用的算法叫做“Same-value-zero equality”,它类似于精确相等运算符(===),主要的区别是向 Set 加入值时认为NaN等于自身,而精确相等运算符认为NaN不等于自身。

let set = new Set();
let a = NaN;
let b = NaN;
set.add(a);
set.add(b);
set // Set {NaN}

上面代码向 Set 实例添加了两次 NaN,但是只会加入一个。这表明,在 Set 内部,两个 NaN 是相等的。

另外,两个对象总是不相等的。

let set = new Set();

set.add({});
set.size // 1

set.add({});
set.size // 2

上面代码表示,由于两个空对象不相等,所以它们被视为两个值。

Set 实例的属性和方法

Set 结构的实例有以下属性。

  • Set.prototype.constructor:构造函数,默认就是Set函数。

  • Set.prototype.size:返回Set实例的成员总数。 Set 实例的方法分为两大类:操作方法(用于操作数据)和遍历方法(用于遍历成员)。下面先介绍四个操作方法。

  • Set.prototype.add(value):添加某个值,返回 Set 结构本身。

  • Set.prototype.delete(value):删除某个值,返回一个布尔值,表示删除是否成功。

  • Set.prototype.has(value):返回一个布尔值,表示该值是否为Set的成员。

  • Set.prototype.clear():清除所有成员,没有返回值。 上面这些属性和方法的实例如下。

s.add(1).add(2).add(2);
// 注意2被加入了两次

s.size // 2

s.has(1) // true
s.has(2) // true
s.has(3) // false

s.delete(2);
s.has(2) // false

下面是一个对比,看看在判断是否包括一个键上面,Object结构和Set结构的写法不同。

// 对象的写法
const properties = {
  'width': 1,
  'height': 1
};

if (properties[someName]) {
  // do something
}

// Set的写法
const properties = new Set();

properties.add('width');
properties.add('height');

if (properties.has(someName)) {
  // do something
}

Array.from方法可以将 Set 结构转为数组。

const items = new Set([1, 2, 3, 4, 5]);
const array = Array.from(items);

这就提供了去除数组重复成员的另一种方法。

function dedupe(array) {
  return Array.from(new Set(array));
}

dedupe([1, 1, 2, 3]) // [1, 2, 3]

遍历操作

Set 结构的实例有四个遍历方法,可以用于遍历成员。

  • Set.prototype.keys():返回键名的遍历器
  • Set.prototype.values():返回键值的遍历器
  • Set.prototype.entries():返回键值对的遍历器
  • Set.prototype.forEach():使用回调函数遍历每个成员 需要特别指出的是,Set的遍历顺序就是插入顺序。这个特性有时非常有用,比如使用 Set 保存一个回调函数列表,调用时就能保证按照添加顺序调用。

(1)keys()values()entries()

keys方法、values方法、entries方法返回的都是遍历器对象。由于 Set 结构没有键名,只有键值(或者说键名和键值是同一个值),所以keys方法和values方法的行为完全一致。

let set = new Set(['red', 'green', 'blue']);

for (let item of set.keys()) {
  console.log(item);
}
// red
// green
// blue

for (let item of set.values()) {
  console.log(item);
}
// red
// green
// blue

for (let item of set.entries()) {
  console.log(item);
}
// ["red", "red"]
// ["green", "green"]
// ["blue", "blue"]

上面代码中,entries方法返回的遍历器,同时包括键名和键值,所以每次输出一个数组,它的两个成员完全相等。

Set 结构的实例默认可遍历,它的默认遍历器生成函数就是它的values方法。

Set.prototype[Symbol.iterator] === Set.prototype.values
// true

这意味着,可以省略values方法,直接用for...of循环遍历 Set

let set = new Set(['red', 'green', 'blue']);

for (let x of set) {
  console.log(x);
}
// red
// green
// blue

(2)forEach()

Set 结构的实例与数组一样,也拥有forEach方法,用于对每个成员执行某种操作,没有返回值。

let set = new Set([1, 4, 9]);
set.forEach((value, key) => console.log(key + ' : ' + value))
// 1 : 1
// 4 : 4
// 9 : 9

上面代码说明,forEach方法的参数就是一个处理函数。该函数的参数与数组的forEach一致,依次为键值、键名、集合本身(上例省略了该参数)。这里需要注意,Set 结构的键名就是键值(两者是同一个值),因此第一个参数与第二个参数的值永远都是一样的。

另外,forEach方法还可以有第二个参数,表示绑定处理函数内部的this对象。

(3)遍历的应用

扩展运算符(...)内部使用for...of循环,所以也可以用于 Set 结构。

let set = new Set(['red', 'green', 'blue']);
let arr = [...set];
// ['red', 'green', 'blue']

扩展运算符和 Set 结构相结合,就可以去除数组的重复成员。

let arr = [3, 5, 2, 2, 5, 5];
let unique = [...new Set(arr)];
// [3, 5, 2]

而且,数组的mapfilter方法也可以间接用于 Set 了。

let set = new Set([1, 2, 3]);
set = new Set([...set].map(x => x * 2));
// 返回Set结构:{2, 4, 6}

let set = new Set([1, 2, 3, 4, 5]);
set = new Set([...set].filter(x => (x % 2) == 0));
// 返回Set结构:{2, 4}

因此使用 Set 可以很容易地实现并集(Union)、交集(Intersect)和差集(Difference)。

let a = new Set([1, 2, 3]);
let b = new Set([4, 3, 2]);

// 并集
let union = new Set([...a, ...b]);
// Set {1, 2, 3, 4}

// 交集
let intersect = new Set([...a].filter(x => b.has(x)));
// set {2, 3}

// (a 相对于 b 的)差集
let difference = new Set([...a].filter(x => !b.has(x)));
// Set {1}

如果想在遍历操作中,同步改变原来的 Set 结构,目前没有直接的方法,但有两种变通方法。一种是利用原 Set 结构映射出一个新的结构,然后赋值给原来的 Set 结构;另一种是利用Array.from方法。

// 方法一
let set = new Set([1, 2, 3]);
set = new Set([...set].map(val => val * 2));
// set的值是2, 4, 6

// 方法二
let set = new Set([1, 2, 3]);
set = new Set(Array.from(set, val => val * 2));
// set的值是2, 4, 6

上面代码提供了两种方法,直接在遍历操作中改变原来的 Set 结构。

WeakSet

含义

WeakSet 结构与 Set 类似,也是不重复的值的集合。但是,它与 Set 有两个区别。

首先,WeakSet 的成员只能是对象,而不能是其他类型的值。

const ws = new WeakSet();
ws.add(1)
// TypeError: Invalid value used in weak set
ws.add(Symbol())
// TypeError: invalid value used in weak set

上面代码试图向 WeakSet 添加一个数值和Symbol值,结果报错,因为 WeakSet 只能放置对象。

其次,WeakSet 中的对象都是弱引用,即垃圾回收机制不考虑 WeakSet 对该对象的引用,也就是说,如果其他对象都不再引用该对象,那么垃圾回收机制会自动回收该对象所占用的内存,不考虑该对象还存在于 WeakSet 之中。

这是因为垃圾回收机制依赖引用计数,如果一个值的引用次数不为0,垃圾回收机制就不会释放这块内存。结束使用该值之后,有时会忘记取消引用,导致内存无法释放,进而可能会引发内存泄漏。WeakSet 里面的引用,都不计入垃圾回收机制,所以就不存在这个问题。因此,WeakSet 适合临时存放一组对象,以及存放跟对象绑定的信息。只要这些对象在外部消失,它在 WeakSet 里面的引用就会自动消失。

由于上面这个特点,WeakSet 的成员是不适合引用的,因为它会随时消失。另外,由于 WeakSet 内部有多少个成员,取决于垃圾回收机制有没有运行,运行前后很可能成员个数是不一样的,而垃圾回收机制何时运行是不可预测的,因此 ES6 规定 WeakSet 不可遍历。

这些特点同样适用于前面的 WeakMap 结构。

语法

WeakSet 是一个构造函数,可以使用new命令,创建 WeakSet 数据结构。

const ws = new WeakSet();

作为构造函数,WeakSet 可以接受一个数组或类似数组的对象作为参数。(实际上,任何具有 Iterable 接口的对象,都可以作为 WeakSet 的参数。)该数组的所有成员,都会自动成为 WeakSet 实例对象的成员。

const a = [[1, 2], [3, 4]];
const ws = new WeakSet(a);
// WeakSet {[1, 2], [3, 4]}

上面代码中,a是一个数组,它有两个成员,也都是数组。将a作为 WeakSet 构造函数的参数,a的成员会自动成为 WeakSet 的成员。

注意,是a数组的成员成为 WeakSet 的成员,而不是a数组本身。这意味着,数组的成员只能是对象。

const b = [3, 4];
const ws = new WeakSet(b);
// Uncaught TypeError: Invalid value used in weak set(…)

上面代码中,数组b的成员不是对象,加入 WeakSet 就会报错。

WeakSet 结构有以下三个方法。

  • WeakSet.prototype.add(value):向 WeakSet 实例添加一个新成员。
  • WeakSet.prototype.delete(value):清除 WeakSet 实例的指定成员。
  • WeakSet.prototype.has(value):返回一个布尔值,表示某个值是否在 WeakSet 实例之中。 下面是一个例子。
const ws = new WeakSet();
const obj = {};
const foo = {};

ws.add(window);
ws.add(obj);

ws.has(window); // true
ws.has(foo);    // false

ws.delete(window);
ws.has(window);    // false

WeakSet 没有size属性,没有办法遍历它的成员。

ws.size // undefined
ws.forEach // undefined

ws.forEach(function(item){ console.log('WeakSet has ' + item)})
// TypeError: undefined is not a function

上面代码试图获取sizeforEach属性,结果都不能成功。

WeakSet 不能遍历,是因为成员都是弱引用,随时可能消失,遍历机制无法保证成员的存在,很可能刚刚遍历结束,成员就取不到了。WeakSet 的一个用处,是储存 DOM 节点,而不用担心这些节点从文档移除时,会引发内存泄漏。

下面是 WeakSet 的另一个例子。

const foos = new WeakSet()
class Foo {
  constructor() {
    foos.add(this)
  }
  method () {
    if (!foos.has(this)) {
      throw new TypeError('Foo.prototype.method 只能在Foo的实例上调用!');
    }
  }
}

上面代码保证了Foo的实例方法,只能在Foo的实例上调用。这里使用 WeakSet 的好处是,foos对实例的引用,不会被计入内存回收机制,所以删除实例的时候,不用考虑foos,也不会出现内存泄漏。

五、Symbol

概述

ES6 引入了一种新的原始数据类型Symbol,表示独一无二的值。它是 JavaScript 语言的第七种数据类型,前六种是:undefinednull、布尔值(Boolean)、字符串(String)、数值(Number)、对象(Object)。

Symbol 值通过Symbol函数生成。这就是说,对象的属性名现在可以有两种类型,一种是原来就有的字符串,另一种就是新增的 Symbol 类型。凡是属性名属于 Symbol 类型,就都是独一无二的,可以保证不会与其他属性名产生冲突。

let s = Symbol();

typeof s   // "symbol"

上面代码中,变量s就是一个独一无二的值。typeof运算符的结果,表明变量sSymbol 数据类型,而不是字符串之类的其他类型。

注意,Symbol函数前不能使用new命令,否则会报错。这是因为生成的 Symbol 是一个原始类型的值,不是对象。也就是说,由于 Symbol 值不是对象,所以不能添加属性。基本上,它是一种类似于字符串的数据类型。

Symbol函数可以接受一个字符串作为参数,表示对 Symbol 实例的描述,主要是为了在控制台显示,或者转为字符串时,比较容易区分。

let s1 = Symbol('foo');
let s2 = Symbol('bar');

s1 // Symbol(foo)
s2 // Symbol(bar)

s1.toString() // "Symbol(foo)"
s2.toString() // "Symbol(bar)"

上面代码中,s1s2是两个 Symbol 值。如果不加参数,它们在控制台的输出都是Symbol(),不利于区分。有了参数以后,就等于为它们加上了描述,输出的时候就能够分清,到底是哪一个值。

如果 Symbol 的参数是一个对象,就会调用该对象的toString方法,将其转为字符串,然后才生成一个 Symbol 值。

const obj = {
  toString() {
    return 'abc';
  }
};
const sym = Symbol(obj);
sym // Symbol(abc)

注意,Symbol函数的参数只是表示对当前 Symbol 值的描述,因此相同参数的Symbol函数的返回值是不相等的。

// 没有参数的情况
let s1 = Symbol();
let s2 = Symbol();

s1 === s2 // false

// 有参数的情况
let s1 = Symbol('foo');
let s2 = Symbol('foo');

s1 === s2 // false

上面代码中,s1s2都是Symbol函数的返回值,而且参数相同,但是它们是不相等的。

Symbol 值不能与其他类型的值进行运算,会报错。

let sym = Symbol('My symbol');

"your symbol is " + sym
// TypeError: can't convert symbol to string
`your symbol is ${sym}`
// TypeError: can't convert symbol to string

但是,Symbol 值可以显式转为字符串。

let sym = Symbol('My symbol');

String(sym) // 'Symbol(My symbol)'
sym.toString() // 'Symbol(My symbol)'

另外,Symbol 值也可以转为布尔值,但是不能转为数值。

let sym = Symbol();
Boolean(sym) // true
!sym  // false

if (sym) {
  // ...
}

Number(sym) // TypeError
sym + 2 // TypeError

Symbol.prototype.description

创建 Symbol 的时候,可以添加一个描述。

const sym = Symbol('foo');

上面代码中,sym的描述就是字符串foo

但是,读取这个描述需要将 Symbol 显式转为字符串,即下面的写法。

const sym = Symbol('foo');

String(sym) // "Symbol(foo)"
sym.toString() // "Symbol(foo)"

上面的用法不是很方便。ES2019 提供了一个实例属性description,直接返回 Symbol 的描述。

const sym = Symbol('foo');

sym.description // "foo"

作为属性名的 Symbol

由于每一个 Symbol 值都是不相等的,这意味着 Symbol 值可以作为标识符,用于对象的属性名,就能保证不会出现同名的属性。这对于一个对象由多个模块构成的情况非常有用,能防止某一个键被不小心改写或覆盖。

let mySymbol = Symbol();

// 第一种写法
let a = {};
a[mySymbol] = 'Hello!';

// 第二种写法
let a = {
  [mySymbol]: 'Hello!'
};

// 第三种写法
let a = {};
Object.defineProperty(a, mySymbol, { value: 'Hello!' });

// 以上写法都得到同样结果
a[mySymbol] // "Hello!"

注意,Symbol 值作为对象属性名时,不能用点运算符

const mySymbol = Symbol();
const a = {};

a.mySymbol = 'Hello!';
a[mySymbol] // undefined
a['mySymbol'] // "Hello!"

上面代码中,因为点运算符后面总是字符串,所以不会读取mySymbol作为标识名所指代的那个值,导致a的属性名实际上是一个字符串,而不是一个 Symbol 值。

同理,在对象的内部,使用 Symbol 值定义属性时,Symbol 值必须放在方括号之中。

let s = Symbol();

let obj = {
  [s]: function (arg) { ... }
};

obj[s](123);

上面代码中,如果s不放在方括号中,该属性的键名就是字符串s,而不是s所代表的那个 Symbol 值。

采用增强的对象写法,上面代码的obj对象可以写得更简洁一些。

let obj = {
  [s](arg) { ... }
};

还有一点需要注意,Symbol 值作为属性名时,该属性还是公开属性,不是私有属性。

属性名的遍历

Symbol 作为属性名,遍历对象的时候,该属性不会出现在for...infor...of循环中,也不会被Object.keys()Object.getOwnPropertyNames()JSON.stringify()返回。

但是,它也不是私有属性,有一个Object.getOwnPropertySymbols()方法,可以获取指定对象的所有 Symbol 属性名。该方法返回一个数组,成员是当前对象的所有用作属性名的 Symbol 值。

const obj = {};
const foo = Symbol('foo');

obj[foo] = 'bar';

for (let i in obj) {
  console.log(i); // 无输出
}

Object.getOwnPropertyNames(obj) // []
Object.getOwnPropertySymbols(obj) // [Symbol(foo)]

上面代码中,使用for...in循环和Object.getOwnPropertyNames()方法都得不到 Symbol 键名,需要使用Object.getOwnPropertySymbols()方法。

另一个新的 API,Reflect.ownKeys()方法可以返回所有类型的键名,包括常规键名和 Symbol 键名。

let obj = {
  [Symbol('my_key')]: 1,
  enum: 2,
  nonEnum: 3
};

Reflect.ownKeys(obj)
//  ["enum", "nonEnum", Symbol(my_key)]

由于以 Symbol 值作为键名,不会被常规方法遍历得到。我们可以利用这个特性,为对象定义一些非私有的、但又希望只用于内部的方法。

Symbol.for()Symbol.keyFor()

有时,我们希望重新使用同一个 Symbol 值,Symbol.for()方法可以做到这一点。它接受一个字符串作为参数,然后搜索有没有以该参数作为名称的 Symbol 值。如果有,就返回这个 Symbol 值,否则就新建一个以该字符串为名称的 Symbol 值,并将其注册到全局。

let s1 = Symbol.for('foo');
let s2 = Symbol.for('foo');

s1 === s2 // true

Symbol.for()Symbol()这两种写法,都会生成新的 Symbol。它们的区别是,前者会被登记在全局环境中供搜索,后者不会。Symbol.for()不会每次调用就返回一个新的 Symbol 类型的值,而是会先检查给定的key是否已经存在,如果不存在才会新建一个值。比如,如果你调用Symbol.for("cat")30 次,每次都会返回同一个 Symbol 值,但是调用Symbol("cat")30 次,会返回 30 个不同的 Symbol 值。

Symbol.for("bar") === Symbol.for("bar")
// true

Symbol("bar") === Symbol("bar")
// false

Symbol.keyFor()方法返回一个已登记的 Symbol 类型值的key

let s1 = Symbol.for("foo");
Symbol.keyFor(s1) // "foo"

let s2 = Symbol("foo");
Symbol.keyFor(s2) // undefined

上面代码中,变量s2属于未登记的 Symbol 值,所以返回undefined

注意,Symbol.for()Symbol 值登记的名字,是全局环境的,不管有没有在全局环境运行。

function foo() {
  return Symbol.for('bar');
}

const x = foo();
const y = Symbol.for('bar');
console.log(x === y); // true

上面代码中,Symbol.for('bar')是函数内部运行的,但是生成的 Symbol 值是登记在全局环境的。所以,第二次运行Symbol.for('bar')可以取到这个 Symbol 值。

内置的 Symbol 值

除了定义自己使用的 Symbol 值以外,ES6 还提供了 11 个内置的 Symbol 值,指向语言内部使用的方法。

  • Symbol.hasInstance:

  • Symbol.isConcatSpreadable

  • Symbol.species

  • Symbol.match

  • Symbol.replace

  • Symbol.search

  • Symbol.split

  • Symbol.iterator

  • Symbol.toPrimitive

  • Symbol.toStringTag

    ES6 新增内置对象的Symbol.toStringTag属性值如下。

    • JSON[Symbol.toStringTag]:'JSON'
    • Math[Symbol.toStringTag]:'Math'
    • Module 对象M[Symbol.toStringTag]:'Module'
    • ArrayBuffer.prototype[Symbol.toStringTag]:'ArrayBuffer'
    • DataView.prototype[Symbol.toStringTag]:'DataView'
    • Map.prototype[Symbol.toStringTag]:'Map'
    • Promise.prototype[Symbol.toStringTag]:'Promise'
    • Set.prototype[Symbol.toStringTag]:'Set'
    • %TypedArray%.prototype[Symbol.toStringTag]:'Uint8Array'等
    • WeakMap.prototype[Symbol.toStringTag]:'WeakMap'
    • WeakSet.prototype[Symbol.toStringTag]:'WeakSet'
    • %MapIteratorPrototype%[Symbol.toStringTag]:'Map Iterator'
    • %SetIteratorPrototype%[Symbol.toStringTag]:'Set Iterator'
    • %StringIteratorPrototype%[Symbol.toStringTag]:'String Iterator'
    • Symbol.prototype[Symbol.toStringTag]:'Symbol'
    • Generator.prototype[Symbol.toStringTag]:'Generator'
    • GeneratorFunction.prototype[Symbol.toStringTag]:'GeneratorFunction'
  • Symbol.unscopables

  • 学习更多ES6知识