POJ-2533-Longest Ordered Subsequence(dp)

362 阅读1分钟

                                        Longest Ordered Subsequence  

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

题意描述:

求最长上升子序列的长度

程序代码:

#include<stdio.h>
#include<algorithm>
using namespace std;
int a[1010],dp[1010];
int main()
{
	int T,n,m,i,j,k,sum,maxn;
	while(scanf("%d",&n)!=EOF)
	{
		for(i=0;i<n;i++)
			scanf("%d",&a[i]);
		maxn=0;
		for(i=0;i<n;i++)
		{
			dp[i]=1;
			for(j=0;j<i;j++)
				if(a[i]>a[j])
					dp[i]=max(dp[i],dp[j]+1);
			maxn=max(maxn,dp[i]);
		}
		printf("%d\n",maxn);	
	}
	return 0;
}