操作系统之进程间通信模型

530 阅读6分钟

管道模型

好在有这么多成熟的项目管理流程可以参考。最最传统的模型就是软件开发的瀑布模型(Waterfall Model)。所谓的瀑布模型,其实就是将整个软件开发过程分成多个阶段,往往是上一个阶段完全做完,才将输出结果交给下一个阶段。就像下面这张图展示的一样。

这种模型类似进程间通信的管道模型。还记得咱们最初学 Linux 命令的时候,有下面这样一行命令:

ps -ef | grep 关键字 | awk '{print $2}' | xargs kill -9

这里面的竖线“|”就是一个管道。它会将前一个命令的输出,作为后一个命令的输入。从管道的这个名称可以看出来,管道是一种单向传输数据的机制,它其实是一段缓存,里面的数据只能从一端写入,从另一端读出。如果想互相通信,我们需要创建两个管道才行。

这个时候,管道里面的内容没有被读出,这个命令就是停在这里

这个时候,我们就需要重新连接一个终端。在终端中,用下面的命令读取管道里面的内容:

# cat < hello 
hello world

我们可以看出,瀑布模型的开发流程效率比较低下,因为团队之间无法频繁地沟通。而且,管道的使用模式,也不适合进程间频繁地交换数据。

消息队列模型

这种模型类似进程间通信的消息队列模型。和管道将信息一股脑儿地从一个进程,倒给另一个进程不同,消息队列有点儿像邮件,发送数据时,会分成一个一个独立的数据单元,也就是消息体,每个消息体都是固定大小的存储块,在字节流上不连续。

接下来,我们需要创建一个消息队列,使用 msgget 函数。这个函数需要有一个参数 key,这是消息队列的唯一标识,应该是唯一的。如何保持唯一性呢?这个还是和文件关联。

接下来,我们再来看如何收消息。收消息主要调用 msgrcv 函数,第一个参数是 message queue 的 id,第二个参数是消息的结构体,第三个参数是可接受的最大长度,第四个参数是消息类型, 最后一个参数是 flag,这里 IPC_NOWAIT 表示接收的时候不阻塞,直接返回。

有了消息这种模型,两个进程之间的通信就像咱们平时发邮件一样,你来一封,我回一封,可以频繁沟通了。

共享内存模型

但是有时候,项目组之间的沟通需要特别紧密,而且要分享一些比较大的数据。如果使用邮件,就发现,一方面邮件的来去不及时;另外一方面,附件大小也有限制,所以,这个时候,我们经常采取的方式就是,把两个项目组在需要合作的期间,拉到一个会议室进行合作开发,这样大家可以直接交流文档呀,架构图呀,直接在白板上画或者直接扔给对方,就可以直接看到。

可以看出来,共享会议室这种模型,类似进程间通信的共享内存模型。前面咱们讲内存管理的时候,知道每个进程都有自己独立的虚拟内存空间,不同的进程的虚拟内存空间映射到不同的物理内存中去。这个进程访问 A 地址和另一个进程访问 A 地址,其实访问的是不同的物理内存地址,对于数据的增删查改互不影响。但是,咱们是不是可以变通一下,拿出一块虚拟地址空间来,映射到相同的物理内存中。这样这个进程写入的东西,另外一个进程马上就能看到了,都不需要拷贝来拷贝去,传来传去。

我们可以创建一个共享内存,调用 shmget。

信号量

这里你是不是有一个疑问,如果两个进程 attach 同一个共享内存,大家都往里面写东西,很有可能就冲突了。例如两个进程都同时写一个地址,那先写的那个进程会发现内容被别人覆盖了。所以,这里就需要一种保护机制,使得同一个共享的资源,同时只能被一个进程访问。在 System V IPC 进程间通信机制体系中,早就想好了应对办法,就是信号量(Semaphore)。因此,信号量和共享内存往往要配合使用。

信号量其实是一个计数器,主要用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

我们可以将信号量初始化为一个数值,来代表某种资源的总体数量。对于信号量来讲,会定义两种原子操作,一个是 P 操作,我们称为申请资源操作。这个操作会申请将信号量的数值减去 N,表示这些数量被他申请使用了,其他人不能用了。另一个是 V 操作,我们称为归还资源操作,这个操作会申请将信号量加上 M,表示这些数量已经还给信号量了,其他人可以使用了。

信号

在 Linux 操作系统中,为了响应各种各样的事件,也是定义了非常多的信号。我们可以通过 kill -l 命令,查看所有的信号。

这些信号都是什么作用呢?我们可以通过 man 7 signal 命令查看,里面会有一个列表。


Signal     Value     Action   Comment
──────────────────────────────────────────────────────────────────────
SIGHUP        1       Term    Hangup detected on controlling terminal
                              or death of controlling process
SIGINT        2       Term    Interrupt from keyboard
SIGQUIT       3       Core    Quit from keyboard
SIGILL        4       Core    Illegal Instruction


SIGABRT       6       Core    Abort signal from abort(3)
SIGFPE        8       Core    Floating point exception
SIGKILL       9       Term    Kill signal
SIGSEGV      11       Core    Invalid memory reference
SIGPIPE      13       Term    Broken pipe: write to pipe with no
                              readers
SIGALRM      14       Term    Timer signal from alarm(2)
SIGTERM      15       Term    Termination signal
SIGUSR1   30,10,16    Term    User-defined signal 1
SIGUSR2   31,12,17    Term    User-defined signal 2
……

一旦有信号产生,我们就有下面这几种,用户进程对信号的处理方式。

  • 执行默认操作。Linux 对每种信号都规定了默认操作,例如,上面列表中的 Term,就是终止进程的意思。Core 的意思是 Core Dump,也即终止进程后,通过 Core Dump 将当前进程的运行状态保存在文件里面,方便程序员事后进行分析问题在哪里。
  • 我们可以为信号定义一个信号处理函数。当信号发生时,我们就执行相应的信号处理函数。
  • 当我们不希望处理某些信号的时候,就可以忽略该信号,不做任何处理。有两个信号是应用进程无法捕捉和忽略的,即 SIGKILL 和 SEGSTOP,它们用于在任何时候中断或结束某一进程。

管道

我们先来看,我们常用的匿名管道(Anonymous Pipes),也即将多个命令串起来的竖线,背后的原理到底是什么。

上次我们说,它是基于管道的,那管道如何创建呢?管道的创建,需要通过下面这个系统调用。

int pipe(int fd[2])

所谓的匿名管道,其实就是内核里面的一串缓存。