布隆过滤器原理(有手就能学会)

544 阅读1分钟

用bit数组实现了一个简单的布隆过滤器,借鉴了hashMap的hash扰动算法,请看demo

package com.jd.demo.test;

import java.util.Arrays;
import java.util.BitSet;
import java.util.concurrent.atomic.AtomicBoolean;

public class MyBloomFilter {
    //你的布隆过滤器容量
    private static final int DEFAULT_SIZE = 2 << 28;
    //bit数组,用来存放结果
    private static BitSet bitSet = new BitSet(DEFAULT_SIZE);
    //后面hash函数会用到,用来生成不同的hash值,可随意设置,别问我为什么这么多8,图个吉利
    private static final int[] hashInts = {1, 6, 16, 38, 58, 68};

    //add方法,计算出key的hash值,并将对应下标置为true
    public void add(Object key) {
        Arrays.stream(hashInts ).forEach(i -> bitSet.set(hash(key, i)));
    }

    //判断key是否存在,true不一定说明key存在,但是false一定说明不存在
    public boolean isContain(Object key) {
         boolean result = true;
        for (int i : hashInts) {
        	//短路与,只要有一个bit位为false,则返回false
            result = result && bitSet.get(hash(key, i));
        }
        return result;
    }

    //hash函数,借鉴了hashmap的扰动算法,强烈建议大家把这个hash算法看懂,这个设计真的牛皮加闪电
    private int hash(Object key, int i) {
        int h;
        return key == null ? 0 : (i * (DEFAULT_SIZE - 1) & ((h = key.hashCode()) ^ (h >>> 16)));
    }
}

测试

    public static void main(String[] args) {
        MyNewBloomFilter myNewBloomFilter = new MyNewBloomFilter();
        myNewBloomFilter.add("张学友");
        myNewBloomFilter.add("郭德纲");
        myNewBloomFilter.add("蔡徐鸡");
        myNewBloomFilter.add(666);
        System.out.println(myNewBloomFilter.isContain("张学友"));//true
        System.out.println(myNewBloomFilter.isContain("张学友 "));//false
        System.out.println(myNewBloomFilter.isContain("张学友1"));//false
        System.out.println(myNewBloomFilter.isContain("郭德纲"));//true
        System.out.println(myNewBloomFilter.isContain("蔡徐母鸡"));//false
        System.out.println(myNewBloomFilter.isContain(666));//true
        System.out.println(myNewBloomFilter.isContain(888));//false
    }


直接看注释吧,写的很详细。

如果对上面的hash算法看不懂,请移步深入理解hashCode和hash算法(面试官都馋哭了)

skr~