集群搭载
这里只在一台阿里云上部署集群,但配置是差不多的。只要保证这些broker连接的zookeeper是同一个即可
- 将kafka的配置文件复制两份
- 修改端口号
cp config/server.properties config/server‐1.properties
cp config/server.properties config/server‐2.properties
修改配置文件,改id端口号和日志目录,其他不变
broker.id = 1
listeners=PLAINTEXT://***:9093
log.dir=/usr/local/data/kafka‐logs‐1
broker.id = 2
listeners=PLAINTEXT://***:9094
log.dir=/usr/local/data/kafka‐logs‐2
在kafka 的目录下将三个broker启动
bin/kafka‐server‐start.sh ‐daemon config/server.properties
bin/kafka‐server‐start.sh ‐daemon config/server‐1.properties
bin/kafka‐server‐start.sh ‐daemon config/server‐2.properties
测试
通过jps查看
jps -l
Application是阿里云进程,QuorymPeerMain是zookeeper进程
在zk的目录下,通过zookeeper的客户端查看注册brokerId,可以看到3个都注册成功
bin/zkCli.sh
ls /brokers/ids
之前也有提到,分区的副本数目不得超过broker的数目.有了集群,才可以创建多个副本.
分区总数为分区数 * 副本数.接下来创建分区数为7.副本数为2的主题server-cluster.
注意不要用下划线,不然会收到警告.因为下划线用于kafka内部主题的命名.
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 2 --partitions 7 --topic server-cluster
然后查看主题的详情,可以看到分区在各个broker上的分布, ISR是保持同步的副本集
bin/kafka-topics.sh --zookeeper localhost:2181 --describe --topic server-cluster
将Id为2的broker关闭(Ctrl + C) ,然后再次查看
可以看到,由于id为2的broker被关闭,ISR中已将其剔除.而且原来leader为2的分区,重新选举1为leader
集群消费
在开始之前,需要在阿里云中将集群的端口开放
可以通过telnet来大致判断一下开放的几个端口是否能通,如下就是通的
测试
直接用之前的代码测试一下就可以,不过配置要修改一下,将集群的broker都加入,并且改一下主题
public static final String brokerList = "***:9092,***:9093,***:9094";
public static final String topic = "server-cluster";
随便输入几条消息,生产者效果如下,之前有加入拦截器,所以消费者收到的消息会有前缀"th-dhu-",不了解的看之前的文章
消费者效果如下.由于生产者既没有指定分区,也没有提供key,相当于对有效分区进行轮询.具体在以前的文章有介绍
多消费者测试
依照之前多线程篇的文章稍作改动,进行测试
生产者
public class MultiProducer {
/** 有多个可以用逗号隔开 */
public static final String brokerList = "***:9092,***:9093,***:9094";
public static final String topic = "server-cluster";
public static Properties initConfig() {
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerList);
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.CLIENT_ID_CONFIG, "0");
properties.put(ProducerConfig.ACKS_CONFIG, "1");
properties.put(ProducerConfig.RETRIES_CONFIG, 10); //重试次数
return properties;
}
public static void main(String[] args) {
Properties properties = MultiProducer.initConfig();
KafkaProducer<String, String> producer = new KafkaProducer<>(properties);
Scanner scanner = new Scanner(System.in);
for (int i = 0; i < 5; i++) {
try {
String key = scanner.nextLine();
String value = scanner.nextLine();
ProducerRecord<String, String> producerRecord = new ProducerRecord<>(topic, key, value);
producer.send(producerRecord, new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null) {
//TODO
exception.printStackTrace();
} else {
System.out.println(
metadata.topic() + "-" + metadata.partition() + "-" + metadata.offset() + "发送成功!");
}
}
});
} catch (Exception e) {
e.printStackTrace();
}
}
producer.close();
}
}
消费者
import java.util.List;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.serialization.StringDeserializer;
public class MultiConsumerDemo1 {
/** 有多个可以用逗号隔开 */
/** 有多个可以用逗号隔开 */
public static final String brokerList = "***:9092,***:9093,***:9094";
public static final String topic = "server-cluster";
/** 消费组的名称 */
public static final String groupId = "kafka-learner-集群消费";
public static Properties initConfig() {
Properties properties = new Properties();
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerList);
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.GROUP_ID_CONFIG, groupId); //消费组
properties.put(ConsumerConfig.CLIENT_ID_CONFIG, "0");
return properties;
}
public static void main(String[] args) {
Properties properties = initConfig();
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(MultiConsumerDemo1.initConfig());
List<PartitionInfo> partitionInfos = consumer.partitionsFor(topic);
final int consumerThreadNum = partitionInfos.size() / 2; //注意不要超过分区的数目, 这里设置成[1,分区数]都可以
consumer.close();
for (int i = 0; i < consumerThreadNum; i++) {
new KafkaConsumerThread1(properties, topic).start();
}
}
}
import java.time.Duration;
import java.util.Collections;
import java.util.HashSet;
import java.util.Properties;
import java.util.Set;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
public class KafkaConsumerThread1 extends Thread {
private KafkaConsumer<String, String> consumer;
public KafkaConsumerThread1(Properties properties, String topic) {
this.consumer = new KafkaConsumer<String, String>(properties);
this.consumer.subscribe(Collections.singletonList(topic));
}
@Override
public void run() {
try {
//这里要先poll到有效值才能获取到这个消费者拥有的分区
Set<TopicPartition> assignment = new HashSet<>();
while (assignment.isEmpty()) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
for (ConsumerRecord<String, String> record : records) {
System.out.println(
"分区是:" + record.partition() + "分区的key是:" + record.key() + "分区的值是:" + record.value());
}
assignment = consumer.assignment();//获取订阅的分区
}
String name = "consumer_" + Thread.currentThread().getName();
StringBuilder partitions = new StringBuilder();
consumer.assignment().forEach(e -> partitions.append(e.partition()).append("区 "));
System.out.println(name + "被分到的分区有:" + partitions.toString());
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
for (ConsumerRecord<String, String> record : records) {
System.out.println(
"分区是:" + record.partition() + "分区的key是:" + record.key() + "分区的值是:" + record.value());
}
}
} catch (Exception e) {
e.printStackTrace();
} finally {
consumer.close();
}
}
}
运行结果
生产者
消费组
架构图
根据消费者分配的情况,画个图,大概是这样
也可以看出来,Kafka并非读写分离. Producer只会往leader里写入,Consumer也只消费Leader里的数据.