目标
- 集成限流(rate_limiter)插件
- 压测接口触发限流
- soul网关限流插件源码分析
- 总结
简介Soul网关限流插件
soul网关的限流插件是对流量管控的核心,soul网关的限流粒度可以是接口或者参数级别,soul网关的限流插件是基于redis实现的令牌桶算法,所以在集成soul网关之前要搭建一个redis。
网关集成限流插件
- pom
<dependency>
<groupId>org.dromara</groupId>
<artifactId>soul-spring-boot-starter-plugin-ratelimiter</artifactId>
<version>${soul-version}</version>
</dependency>
soul-admin限流插件配置
使用限流插件一定要正确的将redis配置到限流插件上,并且将限流插件开启,然后一定要新建选择器和对应的限流规则,并且限流的规则也一定要配置正确,否则限流可能就不生效了,如果插件中redis配置不对实际上请求都完全不通的。
- 开启限流插件
- 选择器配置
- 规则配置
压测接口触发限流
- 压测工具:jmeter3.2
- 压测参数:1秒,20并发,执行一个循环
- 限流规则参数:容量10,速率10
- 查看限流结果
限流插件源码分析
网关集成了限流的starter,所以我们先看starter中配置类,这里就不详细的说一个请求的完整处理流程了,之前也分析过,soul网关使用责任链模式来匹配执行插件链,所以我们就直接先看限流插件。
- RateLimiterPluginConfiguration
@Configuration
public class RateLimiterPluginConfiguration {
/**
* 限流插件配置
*/
@Bean
public SoulPlugin rateLimiterPlugin() {
// RedisRateLimiter是处理限流的类
return new RateLimiterPlugin(new RedisRateLimiter());
}
/**
* redis客户端的初始化
*/
@Bean
public PluginDataHandler rateLimiterPluginDataHandler() {
return new RateLimiterPluginDataHandler();
}
}
- RateLimiterPluginDataHandler redis连接池的初始化
public class RateLimiterPluginDataHandler implements PluginDataHandler {
@Override
public void handlerPlugin(final PluginData pluginData) {
if (Objects.nonNull(pluginData) && pluginData.getEnabled()) {
// 初始化redis的配置参数
RateLimiterConfig rateLimiterConfig = GsonUtils.getInstance().fromJson(pluginData.getConfig(), RateLimiterConfig.class);
// 如果reactiveRedisTemplate空的,或者redis配置参数对象空的,去创建redis客户端(连接池)
if (Objects.isNull(Singleton.INST.get(ReactiveRedisTemplate.class))
|| Objects.isNull(Singleton.INST.get(RateLimiterConfig.class))
|| !rateLimiterConfig.equals(Singleton.INST.get(RateLimiterConfig.class))) {
LettuceConnectionFactory lettuceConnectionFactory = createLettuceConnectionFactory(rateLimiterConfig);
lettuceConnectionFactory.afterPropertiesSet();
RedisSerializer<String> serializer = new StringRedisSerializer();
RedisSerializationContext<String, String> serializationContext =
RedisSerializationContext.<String, String>newSerializationContext().key(serializer).value(serializer).hashKey(serializer).hashValue(serializer).build();
ReactiveRedisTemplate<String, String> reactiveRedisTemplate = new ReactiveRedisTemplate<>(lettuceConnectionFactory, serializationContext);
// 创建reactiveRedisTemplate,这里注意,创建的reactiveRedisTemplate和rateLimiterConfig是单例的
Singleton.INST.single(ReactiveRedisTemplate.class, reactiveRedisTemplate);
Singleton.INST.single(RateLimiterConfig.class, rateLimiterConfig);
}
}
}
@Override
public String pluginNamed() {
return PluginEnum.RATE_LIMITER.getName();
}
// 创建基于Lettuce的redis连接池
private LettuceConnectionFactory createLettuceConnectionFactory(final RateLimiterConfig rateLimiterConfig) {
LettuceClientConfiguration lettuceClientConfiguration = getLettuceClientConfiguration(rateLimiterConfig);
if (RedisModeEnum.SENTINEL.getName().equals(rateLimiterConfig.getMode())) {
return new LettuceConnectionFactory(redisSentinelConfiguration(rateLimiterConfig), lettuceClientConfiguration);
}
if (RedisModeEnum.CLUSTER.getName().equals(rateLimiterConfig.getMode())) {
return new LettuceConnectionFactory(redisClusterConfiguration(rateLimiterConfig), lettuceClientConfiguration);
}
return new LettuceConnectionFactory(redisStandaloneConfiguration(rateLimiterConfig), lettuceClientConfiguration);
}
private LettuceClientConfiguration getLettuceClientConfiguration(final RateLimiterConfig rateLimiterConfig) {
return LettucePoolingClientConfiguration.builder().poolConfig(getPoolConfig(rateLimiterConfig)).build();
}
// redis连接池配置
private GenericObjectPoolConfig<?> getPoolConfig(final RateLimiterConfig rateLimiterConfig) {
GenericObjectPoolConfig<?> config = new GenericObjectPoolConfig<>();
config.setMaxTotal(rateLimiterConfig.getMaxActive());
config.setMaxIdle(rateLimiterConfig.getMaxIdle());
config.setMinIdle(rateLimiterConfig.getMinIdle());
if (rateLimiterConfig.getMaxWait() != null) {
config.setMaxWaitMillis(rateLimiterConfig.getMaxWait().toMillis());
}
return config;
}
/**
* 单点的redis
*/
protected final RedisStandaloneConfiguration redisStandaloneConfiguration(final RateLimiterConfig rateLimiterConfig) {
RedisStandaloneConfiguration config = new RedisStandaloneConfiguration();
String[] parts = StringUtils.split(rateLimiterConfig.getUrl(), ":");
assert parts != null;
config.setHostName(parts[0]);
config.setPort(Integer.parseInt(parts[1]));
if (rateLimiterConfig.getPassword() != null) {
config.setPassword(RedisPassword.of(rateLimiterConfig.getPassword()));
}
config.setDatabase(rateLimiterConfig.getDatabase());
return config;
}
/**
* Cluster的redis集群
*/
private RedisClusterConfiguration redisClusterConfiguration(final RateLimiterConfig rateLimiterConfig) {
RedisClusterConfiguration config = new RedisClusterConfiguration();
config.setClusterNodes(createRedisNode(rateLimiterConfig.getUrl()));
if (rateLimiterConfig.getPassword() != null) {
config.setPassword(RedisPassword.of(rateLimiterConfig.getPassword()));
}
return config;
}
// Sentinel(哨兵)模式的redis集群
private RedisSentinelConfiguration redisSentinelConfiguration(final RateLimiterConfig rateLimiterConfig) {
RedisSentinelConfiguration config = new RedisSentinelConfiguration();
config.master(rateLimiterConfig.getMaster());
config.setSentinels(createRedisNode(rateLimiterConfig.getUrl()));
if (rateLimiterConfig.getPassword() != null) {
config.setPassword(RedisPassword.of(rateLimiterConfig.getPassword()));
}
config.setDatabase(rateLimiterConfig.getDatabase());
return config;
}
private List<RedisNode> createRedisNode(final String url) {
List<RedisNode> redisNodes = new ArrayList<>();
List<String> nodes = Lists.newArrayList(Splitter.on(";").split(url));
for (String node : nodes) {
String[] parts = StringUtils.split(node, ":");
Assert.state(Objects.requireNonNull(parts).length == 2, "Must be defined as 'host:port'");
redisNodes.add(new RedisNode(parts[0], Integer.parseInt(parts[1])));
}
return redisNodes;
}
}
- RedisRateLimiter处理执行限流
@Slf4j
public class RedisRateLimiter {
// lua脚本
private final RedisScript<List<Long>> script;
// 限流器初始化成功标记
private final AtomicBoolean initialized = new AtomicBoolean(false);
/**
* Instantiates a new Redis rate limiter.
*/
public RedisRateLimiter() {
this.script = redisScript();
initialized.compareAndSet(false, true);
}
/**
* This uses a basic token bucket algorithm and relies on the fact that Redis scripts
* execute atomically. No other operations can run between fetching the count and
* writing the new count.
*
* @param id is rule id
* @param replenishRate replenishRate
* @param burstCapacity burstCapacity
* @return {@code Mono<Response>} to indicate when request processing is complete
*/
@SuppressWarnings("unchecked")
public Mono<RateLimiterResponse> isAllowed(final String id, final double replenishRate, final double burstCapacity) {
// 限流器是否成功初始化
if (!this.initialized.get()) {
throw new IllegalStateException("RedisRateLimiter is not initialized");
}
// redis key
List<String> keys = getKeys(id);
// lua脚本
List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "", Instant.now().getEpochSecond() + "", "1");
// 执行限流
Flux<List<Long>> resultFlux = Singleton.INST.get(ReactiveRedisTemplate.class).execute(this.script, keys, scriptArgs);
// 处理结果
return resultFlux.onErrorResume(throwable -> Flux.just(Arrays.asList(1L, -1L)))
.reduce(new ArrayList<Long>(), (longs, l) -> {
longs.addAll(l);
return longs;
}).map(results -> {
boolean allowed = results.get(0) == 1L;
Long tokensLeft = results.get(1);
RateLimiterResponse rateLimiterResponse = new RateLimiterResponse(allowed, tokensLeft);
log.info("RateLimiter response:{}", rateLimiterResponse.toString());
return rateLimiterResponse;
}).doOnError(throwable -> log.error("Error determining if user allowed from redis:{}", throwable.getMessage()));
}
private static List<String> getKeys(final String id) {
String prefix = "request_rate_limiter.{" + id;
String tokenKey = prefix + "}.tokens";
String timestampKey = prefix + "}.timestamp";
return Arrays.asList(tokenKey, timestampKey);
}
// lua脚本存储位置 /META-INF/scripts/request_rate_limiter.lua
@SuppressWarnings("unchecked")
private RedisScript<List<Long>> redisScript() {
DefaultRedisScript redisScript = new DefaultRedisScript<>();
redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("/META-INF/scripts/request_rate_limiter.lua")));
redisScript.setResultType(List.class);
return redisScript;
}
}
- RateLimiterPlugin限流插件
public class RateLimiterPlugin extends AbstractSoulPlugin {
private final RedisRateLimiter redisRateLimiter;
/**
* Instantiates a new Rate limiter plugin.
*
* @param redisRateLimiter the redis rate limiter
*/
public RateLimiterPlugin(final RedisRateLimiter redisRateLimiter) {
this.redisRateLimiter = redisRateLimiter;
}
@Override
public String named() {
return PluginEnum.RATE_LIMITER.getName();
}
@Override
public int getOrder() {
return PluginEnum.RATE_LIMITER.getCode();
}
// 执行插件
@Override
protected Mono<Void> doExecute(final ServerWebExchange exchange, final SoulPluginChain chain, final SelectorData selector, final RuleData rule) {
// 从规则中获取限流数据
final String handle = rule.getHandle();
// 限流数据反序列化成RateLimiterHandle对象
final RateLimiterHandle limiterHandle = GsonUtils.getInstance().fromJson(handle, RateLimiterHandle.class);
// 执行限流并处理返回结果数据
return redisRateLimiter.isAllowed(rule.getId(), limiterHandle.getReplenishRate(), limiterHandle.getBurstCapacity())
.flatMap(response -> {
// 是否被限流
if (!response.isAllowed()) {
exchange.getResponse().setStatusCode(HttpStatus.TOO_MANY_REQUESTS);
Object error = SoulResultWrap.error(SoulResultEnum.TOO_MANY_REQUESTS.getCode(), SoulResultEnum.TOO_MANY_REQUESTS.getMsg(), null);
// 被限流,处理接口返回
return WebFluxResultUtils.result(exchange, error);
}
// 执行插件链
return chain.execute(exchange);
});
}
}
- request_rate_limiter.lua 限流令牌桶算法的lua脚本,该脚本代码逻辑后续分析,这里使用lua脚本的好处是,能够保证redis操作的原子性
--
-- Licensed to the Apache Software Foundation (ASF) under one or more
-- contributor license agreements. See the NOTICE file distributed with
-- this work for additional information regarding copyright ownership.
-- The ASF licenses this file to You under the Apache License, Version 2.0
-- (the "License"); you may not use this file except in compliance with
-- the License. You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
--
local tokens_key = KEYS[1]
local timestamp_key = KEYS[2]
--redis.log(redis.LOG_WARNING, "tokens_key " .. tokens_key)
local rate = tonumber(ARGV[1])
local capacity = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
local requested = tonumber(ARGV[4])
local fill_time = capacity/rate
local ttl = math.floor(fill_time*2)
--redis.log(redis.LOG_WARNING, "rate " .. ARGV[1])
--redis.log(redis.LOG_WARNING, "capacity " .. ARGV[2])
--redis.log(redis.LOG_WARNING, "now " .. ARGV[3])
--redis.log(redis.LOG_WARNING, "requested " .. ARGV[4])
--redis.log(redis.LOG_WARNING, "filltime " .. fill_time)
--redis.log(redis.LOG_WARNING, "ttl " .. ttl)
local last_tokens = tonumber(redis.call("get", tokens_key))
if last_tokens == nil then
last_tokens = capacity
end
--redis.log(redis.LOG_WARNING, "last_tokens " .. last_tokens)
local last_refreshed = tonumber(redis.call("get", timestamp_key))
if last_refreshed == nil then
last_refreshed = 0
end
--redis.log(redis.LOG_WARNING, "last_refreshed " .. last_refreshed)
local delta = math.max(0, now-last_refreshed)
local filled_tokens = math.min(capacity, last_tokens+(delta*rate))
local allowed = filled_tokens >= requested
local new_tokens = filled_tokens
local allowed_num = 0
if allowed then
new_tokens = filled_tokens - requested
allowed_num = 1
end
--redis.log(redis.LOG_WARNING, "delta " .. delta)
--redis.log(redis.LOG_WARNING, "filled_tokens " .. filled_tokens)
--redis.log(redis.LOG_WARNING, "allowed_num " .. allowed_num)
--redis.log(redis.LOG_WARNING, "new_tokens " .. new_tokens)
redis.call("setex", tokens_key, ttl, new_tokens)
redis.call("setex", timestamp_key, ttl, now)
return { allowed_num, new_tokens }
总结
soul网关集成使用限流插件非常简单,要注意的是一定要正确的配置插件的redis信息,自行创建选择器,限流规则要根据业务选择适合的匹配模式即可;后续我们又对限流插件的源码进行了大致的分析,依托于soul网关责任链处理插件的模式,限流插件作为责任链的一个链也是根据插件的匹配规则处理的,在redis服务方面soul网关支持单点redis,cluster集群,Sentinel集群模式,soul网关redis客户端配置使用的Lettuce配置的redis连接池,并且为了保障redis操作的原子性,soul网关的限流算法是使用lua脚本实现的。