从_objc_init分析类的加载

550 阅读9分钟

前言

ios在启动app的时候,会加载一些库,例如libdispatch,libobjc,然后会调用libobjc库中的_objc_init方法进行处理,然后初始化一些基本环境等功能,然后通过map_images映射镜像文件,初始化类、方法、协议的哈希表并维护,通过readimage加载class等,调用load_images回调load方法等,后面通过介绍_objc_init来介绍其加载流程

以objc-818.2为例介绍 源码地址

_objc_init

下面是_objc_init的最上层方法,介绍了环境变量、线程key相关、静态变量、运行时、异常、快速缓存等初始化,然后进入了我们重点关注的镜像的映射和加载方法 _dyld_objc_notify_register,通过其调用map_images和load_images

void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    
    // fixme defer initialization until an objc-using image is found?
    environ_init();
    tls_init();
    static_init();
    runtime_init();
    exception_init();
#if __OBJC2__
    cache_t::init();
#endif
    _imp_implementationWithBlock_init();

    _dyld_objc_notify_register(&map_images, load_images, unmap_image);

#if __OBJC2__
    didCallDyldNotifyRegister = true;
#endif
}

map_images

经过map_images后开始映射,忽略里面的一系列处理,例如addHeader加载头信息,最终进入到了_read_images方法,然后里面会看到TaggedPointers之类的处理,这个是对NSObject小类型的优化,这里不介绍,然后会通过NXCreateMapTable开始创建一个非常重要的哈希表,即:NXMapTable类型的gdb_objc_realized_classes

if (DisableTaggedPointers) {
    disableTaggedPointers();
}

initializeTaggedPointerObfuscator();

if (PrintConnecting) {
    _objc_inform("CLASS: found %d classes during launch", totalClasses);
}

// namedClasses
// Preoptimized classes don't go in this table.
// 4/3 is NXMapTable's load factor
int namedClassesSize = 
    (isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
gdb_objc_realized_classes =
    NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);

ts.log("IMAGE TIMES: first time tasks");

下面是NXMapTable的数据结构,系统有介绍这个哈希表就是正常的哈希表,能通过键值线性访问到映射到数组中的每一条数据,当哈希表开始满时,会扩张哈希表,让其翻倍,已保证哈希表能够正常线性速度访问

注意:想了解哈希表的可以通过我以前的数据结构文章了解

/* This module allows hashing of arbitrary associations [key -> value].  Keys and values must be pointers or integers, and client is responsible for allocating/deallocating this data.  A deallocation call-back is provided.
    NX_MAPNOTAKEY (-1) is used internally as a marker, and therefore keys must always be different from -1.
    As well-behaved scalable data structures, hash tables double in size when they start becoming full, thus guaranteeing both average constant time access and linear size. */
typedef struct _NXMapTable {
    /* private data structure; may change */
    const struct _NXMapTablePrototype	* _Nonnull prototype;
    unsigned	count;
    unsigned	nbBucketsMinusOne;
    void	* _Nullable buckets;
} NXMapTable OBJC_MAP_AVAILABILITY;

顺着_read_images接着往下走,会到达下面一片片段,会发现readClass方法,从中获取累的信息,并加入到resolvedFutureClasses数组中

for (EACH_HEADER) {
    if (! mustReadClasses(hi, hasDyldRoots)) {
        // Image is sufficiently optimized that we need not call readClass()
        continue;
    }

    classref_t const *classlist = _getObjc2ClassList(hi, &count);

    bool headerIsBundle = hi->isBundle();
    bool headerIsPreoptimized = hi->hasPreoptimizedClasses();

    for (i = 0; i < count; i++) {
        Class cls = (Class)classlist[i];
        Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);

        if (newCls != cls  &&  newCls) {
            // Class was moved but not deleted. Currently this occurs 
            // only when the new class resolved a future class.
            // Non-lazily realize the class below.
            resolvedFutureClasses = (Class *)
                realloc(resolvedFutureClasses, 
                        (resolvedFutureClassCount+1) * sizeof(Class));
            resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
        }
    }
}

Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
    const char *mangledName = cls->nonlazyMangledName();
    
    if (missingWeakSuperclass(cls)) {
        // No superclass (probably weak-linked). 
        // Disavow any knowledge of this subclass.
        if (PrintConnecting) {
            _objc_inform("CLASS: IGNORING class '%s' with "
                         "missing weak-linked superclass", 
                         cls->nameForLogging());
        }
        addRemappedClass(cls, nil);
        cls->setSuperclass(nil);
        return nil;
    }
    
    cls->fixupBackwardDeployingStableSwift();

    Class replacing = nil;
    if (mangledName != nullptr) {
        if (Class newCls = popFutureNamedClass(mangledName)) {
            // This name was previously allocated as a future class.
            // Copy objc_class to future class's struct.
            // Preserve future's rw data block.

            if (newCls->isAnySwift()) {
                _objc_fatal("Can't complete future class request for '%s' "
                            "because the real class is too big.",
                            cls->nameForLogging());
            }

            class_rw_t *rw = newCls->data();
            const class_ro_t *old_ro = rw->ro();
            memcpy(newCls, cls, sizeof(objc_class));

            // Manually set address-discriminated ptrauthed fields
            // so that newCls gets the correct signatures.
            newCls->setSuperclass(cls->getSuperclass());
            newCls->initIsa(cls->getIsa());

            rw->set_ro((class_ro_t *)newCls->data());
            newCls->setData(rw);
            freeIfMutable((char *)old_ro->getName());
            free((void *)old_ro);

            addRemappedClass(cls, newCls);

            replacing = cls;
            cls = newCls;
        }
    }
    
    if (headerIsPreoptimized  &&  !replacing) {
        // class list built in shared cache
        // fixme strict assert doesn't work because of duplicates
        // ASSERT(cls == getClass(name));
        ASSERT(mangledName == nullptr || getClassExceptSomeSwift(mangledName));
    } else {
        if (mangledName) { //some Swift generic classes can lazily generate their names
            addNamedClass(cls, mangledName, replacing);
        } else {
            Class meta = cls->ISA();
            const class_ro_t *metaRO = meta->bits.safe_ro();
            ASSERT(metaRO->getNonMetaclass() && "Metaclass with lazy name must have a pointer to the corresponding nonmetaclass.");
            ASSERT(metaRO->getNonMetaclass() == cls && "Metaclass nonmetaclass pointer must equal the original class.");
        }
        addClassTableEntry(cls);
    }

    // for future reference: shared cache never contains MH_BUNDLEs
    if (headerIsBundle) {
        cls->data()->flags |= RO_FROM_BUNDLE;
        cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
    }
    
    return cls;
}

通过此方法将所有的sel都注册到另一个哈希表中

// Fix up @selector references
static size_t UnfixedSelectors;
{
    mutex_locker_t lock(selLock);
    for (EACH_HEADER) {
        if (hi->hasPreoptimizedSelectors()) continue;

        bool isBundle = hi->isBundle();
        SEL *sels = _getObjc2SelectorRefs(hi, &count);
        UnfixedSelectors += count;
        for (i = 0; i < count; i++) {
            const char *name = sel_cname(sels[i]);
            SEL sel = sel_registerNameNoLock(name, isBundle);
            if (sels[i] != sel) {
                sels[i] = sel;
            }
        }
    }
}

顺着_read_images接着往后走,会发现readProtocol方法,之前创建了protocol_map哈希表,通过readProtocol方法,将protocol都添加到protocol_map哈希表中

for (EACH_HEADER) {
        extern objc_class OBJC_CLASS_$_Protocol;
        Class cls = (Class)&OBJC_CLASS_$_Protocol;
        ASSERT(cls);
        NXMapTable *protocol_map = protocols();
        bool isPreoptimized = hi->hasPreoptimizedProtocols();

        // Skip reading protocols if this is an image from the shared cache
        // and we support roots
        // Note, after launch we do need to walk the protocol as the protocol
        // in the shared cache is marked with isCanonical() and that may not
        // be true if some non-shared cache binary was chosen as the canonical
        // definition
        if (launchTime && isPreoptimized) {
            if (PrintProtocols) {
                _objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
                             hi->fname());
            }
            continue;
        }

        bool isBundle = hi->isBundle();

        protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
        for (i = 0; i < count; i++) {
            readProtocol(protolist[i], cls, protocol_map, 
                         isPreoptimized, isBundle);
        }
    }

这里是对protocol进行重映射,修复协议列表引用

for (EACH_HEADER) {
        // At launch time, we know preoptimized image refs are pointing at the
        // shared cache definition of a protocol.  We can skip the check on
        // launch, but have to visit @protocol refs for shared cache images
        // loaded later.
        if (launchTime && hi->isPreoptimized())
            continue;
        protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
        for (i = 0; i < count; i++) {
            remapProtocolRef(&protolist[i]);
        }
    }

顺着_load_images接着走,会发现load_categories_nolock方法,将类别里面的信息拿出,并将类别的方法数组attach到method的最前面

 if (didInitialAttachCategories) {
      for (EACH_HEADER) {
          load_categories_nolock(hi);
      }
  }
  static void load_categories_nolock(header_info *hi) {
    bool hasClassProperties = hi->info()->hasCategoryClassProperties();

    size_t count;
    auto processCatlist = [&](category_t * const *catlist) {
        for (unsigned i = 0; i < count; i++) {
            category_t *cat = catlist[i];
            Class cls = remapClass(cat->cls);
            locstamped_category_t lc{cat, hi};

            if (!cls) {
                // Category's target class is missing (probably weak-linked).
                // Ignore the category.
                if (PrintConnecting) {
                    _objc_inform("CLASS: IGNORING category \?\?\?(%s) %p with "
                                 "missing weak-linked target class",
                                 cat->name, cat);
                }
                continue;
            }

            // Process this category.
            if (cls->isStubClass()) {
                // Stub classes are never realized. Stub classes
                // don't know their metaclass until they're
                // initialized, so we have to add categories with
                // class methods or properties to the stub itself.
                // methodizeClass() will find them and add them to
                // the metaclass as appropriate.
                if (cat->instanceMethods ||
                    cat->protocols ||
                    cat->instanceProperties ||
                    cat->classMethods ||
                    cat->protocols ||
                    (hasClassProperties && cat->_classProperties))
                {
                    objc::unattachedCategories.addForClass(lc, cls);
                }
            } else {
                // First, register the category with its target class.
                // Then, rebuild the class's method lists (etc) if
                // the class is realized.
                if (cat->instanceMethods ||  cat->protocols
                    ||  cat->instanceProperties)
                {
                    if (cls->isRealized()) {
                        attachCategories(cls, &lc, 1, ATTACH_EXISTING);
                    } else {
                        objc::unattachedCategories.addForClass(lc, cls);
                    }
                }

                if (cat->classMethods  ||  cat->protocols
                    ||  (hasClassProperties && cat->_classProperties))
                {
                    if (cls->ISA()->isRealized()) {
                        attachCategories(cls->ISA(), &lc, 1, ATTACH_EXISTING | ATTACH_METACLASS);
                    } else {
                        objc::unattachedCategories.addForClass(lc, cls->ISA());
                    }
                }
            }
        }
    };

    processCatlist(hi->catlist(&count));
    processCatlist(hi->catlist2(&count));
}
  

然后,走到了下面,addClassTableEntry将类都加入到哈希表中,然后调用realizeClassWithoutSwift方法,开始处理更新rw,其中的attachLists在上一章已经介绍了,是将数组放到指定数组的最前面

for (EACH_HEADER) {
    classref_t const *classlist = hi->nlclslist(&count);
    for (i = 0; i < count; i++) {
        Class cls = remapClass(classlist[i]);
        if (!cls) continue;

        addClassTableEntry(cls);

        if (cls->isSwiftStable()) {
            if (cls->swiftMetadataInitializer()) {
                _objc_fatal("Swift class %s with a metadata initializer "
                            "is not allowed to be non-lazy",
                            cls->nameForLogging());
            }
            // fixme also disallow relocatable classes
            // We can't disallow all Swift classes because of
            // classes like Swift.__EmptyArrayStorage
        }
        realizeClassWithoutSwift(cls, nil);
    }
}

下面是realizeClassWithoutSwift方法实现,调整类、父类、元类等相关信息,最后调用methodizeClass方法,更新rw中的methods、properties和protocols

static Class realizeClassWithoutSwift(Class cls, Class previously)
{
    runtimeLock.assertLocked();

    class_rw_t *rw;
    Class supercls;
    Class metacls;

    if (!cls) return nil;
    if (cls->isRealized()) {
        validateAlreadyRealizedClass(cls);
        return cls;
    }
    ASSERT(cls == remapClass(cls));

    // fixme verify class is not in an un-dlopened part of the shared cache?

    auto ro = (const class_ro_t *)cls->data();
    auto isMeta = ro->flags & RO_META;
    if (ro->flags & RO_FUTURE) {
        // This was a future class. rw data is already allocated.
        rw = cls->data();
        ro = cls->data()->ro();
        ASSERT(!isMeta);
        cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
    } else {
        // Normal class. Allocate writeable class data.
        rw = objc::zalloc<class_rw_t>();
        rw->set_ro(ro);
        rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
        cls->setData(rw);
    }

    cls->cache.initializeToEmptyOrPreoptimizedInDisguise();

#if FAST_CACHE_META
    if (isMeta) cls->cache.setBit(FAST_CACHE_META);
#endif

    // Choose an index for this class.
    // Sets cls->instancesRequireRawIsa if indexes no more indexes are available
    cls->chooseClassArrayIndex();

    if (PrintConnecting) {
        _objc_inform("CLASS: realizing class '%s'%s %p %p #%u %s%s",
                     cls->nameForLogging(), isMeta ? " (meta)" : "", 
                     (void*)cls, ro, cls->classArrayIndex(),
                     cls->isSwiftStable() ? "(swift)" : "",
                     cls->isSwiftLegacy() ? "(pre-stable swift)" : "");
    }

    // Realize superclass and metaclass, if they aren't already.
    // This needs to be done after RW_REALIZED is set above, for root classes.
    // This needs to be done after class index is chosen, for root metaclasses.
    // This assumes that none of those classes have Swift contents,
    //   or that Swift's initializers have already been called.
    //   fixme that assumption will be wrong if we add support
    //   for ObjC subclasses of Swift classes.
    supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil);
    metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);

#if SUPPORT_NONPOINTER_ISA
    if (isMeta) {
        // Metaclasses do not need any features from non pointer ISA
        // This allows for a faspath for classes in objc_retain/objc_release.
        cls->setInstancesRequireRawIsa();
    } else {
        // Disable non-pointer isa for some classes and/or platforms.
        // Set instancesRequireRawIsa.
        bool instancesRequireRawIsa = cls->instancesRequireRawIsa();
        bool rawIsaIsInherited = false;
        static bool hackedDispatch = false;

        if (DisableNonpointerIsa) {
            // Non-pointer isa disabled by environment or app SDK version
            instancesRequireRawIsa = true;
        }
        else if (!hackedDispatch  &&  0 == strcmp(ro->getName(), "OS_object"))
        {
            // hack for libdispatch et al - isa also acts as vtable pointer
            hackedDispatch = true;
            instancesRequireRawIsa = true;
        }
        else if (supercls  &&  supercls->getSuperclass()  &&
                 supercls->instancesRequireRawIsa())
        {
            // This is also propagated by addSubclass()
            // but nonpointer isa setup needs it earlier.
            // Special case: instancesRequireRawIsa does not propagate
            // from root class to root metaclass
            instancesRequireRawIsa = true;
            rawIsaIsInherited = true;
        }

        if (instancesRequireRawIsa) {
            cls->setInstancesRequireRawIsaRecursively(rawIsaIsInherited);
        }
    }
// SUPPORT_NONPOINTER_ISA
#endif

    // Update superclass and metaclass in case of remapping
    cls->setSuperclass(supercls);
    cls->initClassIsa(metacls);

    // Reconcile instance variable offsets / layout.
    // This may reallocate class_ro_t, updating our ro variable.
    if (supercls  &&  !isMeta) reconcileInstanceVariables(cls, supercls, ro);

    // Set fastInstanceSize if it wasn't set already.
    cls->setInstanceSize(ro->instanceSize);

    // Copy some flags from ro to rw
    if (ro->flags & RO_HAS_CXX_STRUCTORS) {
        cls->setHasCxxDtor();
        if (! (ro->flags & RO_HAS_CXX_DTOR_ONLY)) {
            cls->setHasCxxCtor();
        }
    }
    
    // Propagate the associated objects forbidden flag from ro or from
    // the superclass.
    if ((ro->flags & RO_FORBIDS_ASSOCIATED_OBJECTS) ||
        (supercls && supercls->forbidsAssociatedObjects()))
    {
        rw->flags |= RW_FORBIDS_ASSOCIATED_OBJECTS;
    }

    // Connect this class to its superclass's subclass lists
    if (supercls) {
        addSubclass(supercls, cls);
    } else {
        addRootClass(cls);
    }

    // Attach categories
    methodizeClass(cls, previously);

    return cls;
}

查看methodizeClass其更新了ro和rw,最后attachToClass将分类的属性、方法、协议都添加到rw中,并且调用attachCategories,最后通过之前提到的list_array_tt的attachLists方法,将分类的属性、方法、协议放到数组的最前面

static void methodizeClass(Class cls, Class previously)
{
    runtimeLock.assertLocked();

    bool isMeta = cls->isMetaClass();
    auto rw = cls->data();
    auto ro = rw->ro();
    auto rwe = rw->ext();

    // Methodizing for the first time
    if (PrintConnecting) {
        _objc_inform("CLASS: methodizing class '%s' %s", 
                     cls->nameForLogging(), isMeta ? "(meta)" : "");
    }

    // Install methods and properties that the class implements itself.
    method_list_t *list = ro->baseMethods();
    if (list) {
        prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls), nullptr);
        if (rwe) rwe->methods.attachLists(&list, 1);
    }

    property_list_t *proplist = ro->baseProperties;
    if (rwe && proplist) {
        rwe->properties.attachLists(&proplist, 1);
    }

    protocol_list_t *protolist = ro->baseProtocols;
    if (rwe && protolist) {
        rwe->protocols.attachLists(&protolist, 1);
    }

    // Root classes get bonus method implementations if they don't have 
    // them already. These apply before category replacements.
    if (cls->isRootMetaclass()) {
        // root metaclass
        addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
    }

    // Attach categories.
    if (previously) {
        if (isMeta) {
            objc::unattachedCategories.attachToClass(cls, previously,
                                                     ATTACH_METACLASS);
        } else {
            // When a class relocates, categories with class methods
            // may be registered on the class itself rather than on
            // the metaclass. Tell attachToClass to look for those.
            objc::unattachedCategories.attachToClass(cls, previously,
                                                     ATTACH_CLASS_AND_METACLASS);
        }
    }
    objc::unattachedCategories.attachToClass(cls, cls,
                                             isMeta ? ATTACH_METACLASS : ATTACH_CLASS);

#if DEBUG
    // Debug: sanity-check all SELs; log method list contents
    for (const auto& meth : rw->methods()) {
        if (PrintConnecting) {
            _objc_inform("METHOD %c[%s %s]", isMeta ? '+' : '-', 
                         cls->nameForLogging(), sel_getName(meth.name()));
        }
        ASSERT(sel_registerName(sel_getName(meth.name())) == meth.name());
    }
#endif
}

void attachToClass(Class cls, Class previously, int flags)
    {
        runtimeLock.assertLocked();
        ASSERT((flags & ATTACH_CLASS) ||
               (flags & ATTACH_METACLASS) ||
               (flags & ATTACH_CLASS_AND_METACLASS));

        auto &map = get();
        auto it = map.find(previously);

        if (it != map.end()) {
            category_list &list = it->second;
            if (flags & ATTACH_CLASS_AND_METACLASS) {
                int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
                attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);
                attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);
            } else {
                attachCategories(cls, list.array(), list.count(), flags);
            }
            map.erase(it);
        }
    }

load_images

介绍完毕map_images开始介绍load_images了,这个和前面的_load_image不是一个方法,可以看到其实现逻辑如下所示,我们可以从当中看到load方法加载的过程

void
load_images(const char *path __unused, const struct mach_header *mh)
{
    if (!didInitialAttachCategories && didCallDyldNotifyRegister) {
        didInitialAttachCategories = true;
        loadAllCategories();
    }

    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;

    recursive_mutex_locker_t lock(loadMethodLock);

    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }

    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}

先查看prepare_load_methods方法,通过循环所有的类,通过schedule_class_load方法,拿出每个类中所有的load方法

在schedule_class_load中可以看到是先递归父类的load方法,然后递归子类的方法,加入到loadable_list中,并设置rw中的flag,避免重复添加

void prepare_load_methods(const headerType *mhdr)
{
    size_t count, i;

    runtimeLock.assertLocked();

    classref_t const *classlist = 
        _getObjc2NonlazyClassList(mhdr, &count);
    for (i = 0; i < count; i++) {
        schedule_class_load(remapClass(classlist[i]));
    }

    category_t * const *categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
    for (i = 0; i < count; i++) {
        category_t *cat = categorylist[i];
        Class cls = remapClass(cat->cls);
        if (!cls) continue;  // category for ignored weak-linked class
        if (cls->isSwiftStable()) {
            _objc_fatal("Swift class extensions and categories on Swift "
                        "classes are not allowed to have +load methods");
        }
        realizeClassWithoutSwift(cls, nil);
        ASSERT(cls->ISA()->isRealized());
        add_category_to_loadable_list(cat);
    }
}

static void schedule_class_load(Class cls)
{
    if (!cls) return;
    ASSERT(cls->isRealized());  // _read_images should realize

    if (cls->data()->flags & RW_LOADED) return;

    // Ensure superclass-first ordering
    schedule_class_load(cls->getSuperclass());

    add_class_to_loadable_list(cls);
    cls->setInfo(RW_LOADED); 
}

在prepare_load_methods之后,开始调用call_load_methods方法,开启autoreleasePoll,开始遍历loadable_classes和more_categories,分别以先后顺序调用call_class_loads、call_category_loads,即先调用类,在调用分类,而前面加入loadable_classes的方法是先加入父类,后加入子类,所以load最终调用顺序为父类->当前类->分类 (另外:如果子类没有实现load,父类的load不会因为子类的继承而多次调用)

void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2. Call category +loads ONCE
        more_categories = call_category_loads();

        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}

static void call_class_loads(void)
{
    int i;
    
    // Detach current loadable list.
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;
    
    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;
        load_method_t load_method = (load_method_t)classes[i].method;
        if (!cls) continue; 

        if (PrintLoading) {
            _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
        }
        (*load_method)(cls, @selector(load));
    }
    
    // Destroy the detached list.
    if (classes) free(classes);
}

最后执行完毕_objc_init方法后,再回调用main函数,才会执行到appDelegate

到这里,_objc_init介绍了差不多了

启动优化建议

从前面可以看出,启动优化分为到main函数之前和之后

main函数之前优化:

从_objc_init可以看出类的加载也是很繁琐的,因此要尽量减少无关代码,因此

1.删除用不到的类和分类代码,删除多余的方法,提高映射加载速度

2.系统会回调load方法,尽量减少load方法的实现和使用

main函数之后的优化:

在appDidFinishLaunchWithOptions之后尽可能减少除了首屏渲染之外的逻辑

一些功能在用到的时候,再初始化相关信息

一些功能放到异步线执行,或者延迟去做

优化代码逻辑,提高效率等