代码地址: github.com/xingyizhou/…
网络结构部分
这里以dla34网络为例,主体在pose_dla_dcn.py
对照网络结构图和代码:
1. Root类
对应绿色框的aggregation node,有多个输入对象,用于聚合各个层的信息。
class Root(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, residual):
super(Root, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, 1,
stride=1, bias=False, padding=(kernel_size - 1) // 2)
self.bn = nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.residual = residual
def forward(self, *x):
children = x
x = self.conv(torch.cat(x, 1))
x = self.bn(x)
if self.residual:
x += children[0]
x = self.relu(x)
return x
2. Tree类
对应红色框的hierarchical deep agrregation(HDA)。其中主要包括几个核心部分:
-
level=1时,self.tree1和self.tree2都是基于BasicBlock模块构成 (residual结构的两层conv_bn_relu),等同于第一个红框。
-
level=2时,self.tree1和self.tree2递归调用Tree类,等同于第二个红框。
class Tree(nn.Module):
def __init__(self, levels, block, in_channels, out_channels, stride=1,
level_root=False, root_dim=0, root_kernel_size=1,
dilation=1, root_residual=False):
super(Tree, self).__init__()
if root_dim == 0:
root_dim = 2 * out_channels
if level_root:
root_dim += in_channels
if levels == 1:
self.tree1 = block(in_channels, out_channels, stride,
dilation=dilation)
self.tree2 = block(out_channels, out_channels, 1,
dilation=dilation)
else:
self.tree1 = Tree(levels - 1, block, in_channels, out_channels,
stride, root_dim=0,
root_kernel_size=root_kernel_size,
dilation=dilation, root_residual=root_residual)
self.tree2 = Tree(levels - 1, block, out_channels, out_channels,
root_dim=root_dim + out_channels,
root_kernel_size=root_kernel_size,
dilation=dilation, root_residual=root_residual)
if levels == 1:
self.root = Root(root_dim, out_channels, root_kernel_size,
root_residual)
self.level_root = level_root
self.root_dim = root_dim
self.downsample = None
self.project = None
self.levels = levels
if stride > 1:
self.downsample = nn.MaxPool2d(stride, stride=stride)
if in_channels != out_channels:
self.project = nn.Sequential(
nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM)
)
def forward(self, x, residual=None, children=None):
children = [] if children is None else children
bottom = self.downsample(x) if self.downsample else x
residual = self.project(bottom) if self.project else bottom
if self.level_root:
children.append(bottom)
x1 = self.tree1(x, residual)
if self.levels == 1:
x2 = self.tree2(x1)
x = self.root(x2, x1, *children)
else:
children.append(x1)
x = self.tree2(x1, children=children)
return x
3. DLA
有了Tree类,可以拼接得到整个DLA架构
def dla34(pretrained=True, **kwargs): # DLA-34
model = DLA([1, 1, 1, 2, 2, 1],
[16, 32, 64, 128, 256, 512],
block=BasicBlock, **kwargs)
if pretrained:
model.load_pretrained_model(data='imagenet', name='dla34', hash='ba72cf86')
return model
DLA中主要包括:
- base_layer: conv_bn_relu ->n*16*512*512
- level0: conv_bn_relu ->n*16*512*512
- level1: conv_bn_relu ->n*32*256*256
- level2: Tree(level=1, level_root=False, 32, 64) ->n*64*128*128
- level3: Tree(level=2, level_root=True, 64, 128) ->n*128*64*64
- level4: Tree(level=2, level_root=True, 128, 256) ->n*256*32*32
- level5: Tree(level=1, level_root=True, 256, 512) ->n*512*16*16
class DLA(nn.Module):
def __init__(self, levels, channels, num_classes=1000,
block=BasicBlock, residual_root=False, linear_root=False):
super(DLA, self).__init__()
self.channels = channels
self.num_classes = num_classes
self.base_layer = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
padding=3, bias=False),
nn.BatchNorm2d(channels[0], momentum=BN_MOMENTUM),
nn.ReLU(inplace=True))
self.level0 = self._make_conv_level(
channels[0], channels[0], levels[0])
self.level1 = self._make_conv_level(
channels[0], channels[1], levels[1], stride=2)
self.level2 = Tree(levels[2], block, channels[1], channels[2], 2,
level_root=False,
root_residual=residual_root)
self.level3 = Tree(levels[3], block, channels[2], channels[3], 2,
level_root=True, root_residual=residual_root)
self.level4 = Tree(levels[4], block, channels[3], channels[4], 2,
level_root=True, root_residual=residual_root)
self.level5 = Tree(levels[5], block, channels[4], channels[5], 2,
level_root=True, root_residual=residual_root)
def forward(self, x):
y = []
x = self.base_layer(x)
for i in range(6):
x = getattr(self, 'level{}'.format(i))(x)
y.append(x)
return y
最终的DLASeg,是在DLA的基础上使用Deformable Convolution和Upsample层组合进行信息提取,提升了空间分辨率。其核心是DLAUp和IDAUp, 这两个类中都使用了两个Deformable Convolution可变形卷积,然后使用ConvTranspose2d进行上采样。
class DLASeg(nn.Module):
def __init__(self, base_name, heads, pretrained, down_ratio, final_kernel,
last_level, head_conv, out_channel=0):
super(DLASeg, self).__init__()
assert down_ratio in [2, 4, 8, 16]
self.first_level = int(np.log2(down_ratio))
self.last_level = last_level
self.base = globals()[base_name](pretrained=pretrained)
channels = self.base.channels
scales = [2 ** i for i in range(len(channels[self.first_level:]))]
self.dla_up = DLAUp(self.first_level, channels[self.first_level:], scales)
if out_channel == 0:
out_channel = channels[self.first_level]
self.ida_up = IDAUp(out_channel, channels[self.first_level:self.last_level],
[2 ** i for i in range(self.last_level - self.first_level)])
self.heads = heads
for head in self.heads:
classes = self.heads[head]
if head_conv > 0:
fc = nn.Sequential(
nn.Conv2d(channels[self.first_level], head_conv,
kernel_size=3, padding=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(head_conv, classes,
kernel_size=final_kernel, stride=1,
padding=final_kernel // 2, bias=True))
if 'hm' in head:
fc[-1].bias.data.fill_(-2.19)
else:
fill_fc_weights(fc)
else:
fc = nn.Conv2d(channels[self.first_level], classes,
kernel_size=final_kernel, stride=1,
padding=final_kernel // 2, bias=True)
if 'hm' in head:
fc.bias.data.fill_(-2.19)
else:
fill_fc_weights(fc)
self.__setattr__(head, fc)
def forward(self, x):
x = self.base(x)
x = self.dla_up(x)
y = []
for i in range(self.last_level - self.first_level):
y.append(x[i].clone())
self.ida_up(y, 0, len(y))
z = {}
for head in self.heads:
z[head] = self.__getattr__(head)(y[-1])
return [z]
4. IDAUp
其中IDAUp负责解码,起始于较小的尺度,然后迭代合并更大的尺度。对应图中的橘色箭头。
-
layer_i = (layer_i->proj->up+layer_i-1)->node
-
proj和node是由DeformConv模块(Deconv_bn_relu)。project降低维度,up反卷积提升spatial size,从而与前一层layer相同,两层特征再进行聚合。
class IDAUp(nn.Module):
def __init__(self, o, channels, up_f):
super(IDAUp, self).__init__()
for i in range(1, len(channels)):
c = channels[i]
f = int(up_f[i])
proj = DeformConv(c, o)
node = DeformConv(o, o)
up = nn.ConvTranspose2d(o, o, f * 2, stride=f,
padding=f // 2, output_padding=0,
groups=o, bias=False)
fill_up_weights(up)
setattr(self, 'proj_' + str(i), proj)
setattr(self, 'up_' + str(i), up)
setattr(self, 'node_' + str(i), node)
def forward(self, layers, startp, endp):
for i in range(startp + 1, endp):
upsample = getattr(self, 'up_' + str(i - startp))
project = getattr(self, 'proj_' + str(i - startp))
layers[i] = upsample(project(layers[i]))
node = getattr(self, 'node_' + str(i - startp))
layers[i] = node(layers[i] + layers[i - 1])
5. DLAUp
DLAUp共包含三个IDAUp:
- ida(layers, 4, 6)
- layer5 = (layer5->proj->up+layer4)->node # n*512*16*16->n*256*32*32
- ida(layers, 3, 6)
- layer4 = (layer4->proj->up+layer3)->node # n*256*32*32->n*128*64*64
- layer5 = (layer5->proj->up+layer4)->node # n*256*32*32->n*128*64*64
- ida(layers, 2, 6)
- layer3 = (layer3->proj->up+layer2)->node # n*128*64*64->n*64*128*128
- layer4 = (layer4->proj->up+layer3)->node # n*128*64*64->n*64*128*128
- layer5 = (layer5->proj->up+layer4)->node # n*128*64*64->n*64*128*128
- 输出out列表长度为4,存储了初始的layer5以及三次变换后的layer5(spatial size降序排)
class DLAUp(nn.Module):
def __init__(self, startp, channels, scales, in_channels=None):
super(DLAUp, self).__init__()
self.startp = startp
if in_channels is None:
in_channels = channels
self.channels = channels
channels = list(channels)
scales = np.array(scales, dtype=int)
for i in range(len(channels) - 1):
j = -i - 2
setattr(self, 'ida_{}'.format(i),
IDAUp(channels[j], in_channels[j:],
scales[j:] // scales[j]))
scales[j + 1:] = scales[j]
in_channels[j + 1:] = [channels[j] for _ in channels[j + 1:]]
def forward(self, layers):
out = [layers[-1]] # start with 32
for i in range(len(layers) - self.startp - 1):
ida = getattr(self, 'ida_{}'.format(i))
ida(layers, len(layers) -i - 2, len(layers))
out.insert(0, layers[-1])
return out
6. DLASeg
回到DLASeg,共包括上面的DLA,DLAUp,IDAUp,以及三个head。示意图如下所示。
- self.base为上面讲的DLA结构,包括base_layer以及level0/1/2/3/4/5六层结构
- self.dla_up为上面讲的DLAUp结构,包括三个IDAUp结构,主要对浅层深层特征进行融合
- self.ida_up包括一个IDAUp结构:
- ida(y, 0, 3)
- y[1] = (y[1]->proj->up+y[0])->node # n*128*64*64>n*64*128*128
- y[2] = (y[2]->proj->up+y[1])->node # n*256*32*32>n*64*128*128
- head部分包括self.hm/self.wh/self.reg,结构均为conv_relu_conv。不同head的输入均为y[2],已经融合了不同层的信息。
参考文献: